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Abstract In this paper, by measure theory, we introduce and investigate
the concepts of (Stepanov-like) (µ, ν)-pseudo almost automorphic of class r
and class infinity, respectively. As applications, we establish some sufficient
criteria for the existence, uniqueness of pseudo almost automorphic mild so-
lutions to two-term fractional functional differential equations with finite or
infinite delay. The working tools are based on the generalization of semigroup
theory, Banach contraction mapping principle and Leray-Schauder alternative
theorem. Finally, we explore the same topic for a fractional partial functional
differential equation with delay.
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1. Introduction

Since Bochner [7] introduced the concept of almost automorphic function, there
have been many interesting generalizations of this function in the past few decades.
The generalizations include asymptotically almost automorphic function, pseudo
almost automorphic function, weighted pseudo almost automorphic function, and
these concepts in the Stepanov-like sense, one can see [10,29,34,36] for more details.
Recently, a new more general type of almost automorphic function called µ-pseudo
almost automorphic function is investigated by Blot et al. [6], which generalize all of
above mentioned functions. Subsequently, µ-pseudo almost automorphic function
is generalized into (µ, ν)-pseudo almost automorphic function by Diagana et al
[20]. The results on the theory or the applications of the (µ, ν)-pseudo almost
automorphic function are still few [11,22,33,37] and this topic is to be well explored.

In recent years, fractional differential equations have attracted more and more
attentions, used to be described a large number of natural phenomena in various
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fields of the science, such as physics, mechanics, chemistry engineering etc. In par-
ticular, the study of abstract semilinear fractional differential equations is one of
great interests. Many works have been done to prove existence, uniqueness of the
mild solutions with a prescribed qualitative property. Almost automorphy of semi-
linear fractional differential equations were initiated by Araya and Lizama [1]. In
their work, the authors investigated the existence, uniqueness of almost automor-
phic mild solutions for the following equations

Dα
t u(t)−Au(t) = f(t, u(t)), t ∈ R, 1 < α ≤ 2, (1.1)

when A is a generator of an α-resolvent family. Cuevas and Lizama [13] considered
the following semilinear fractional differential equations

Dα
t u(t)−Au(t) = Dα−1

t f(t, u(t)), t ∈ R, 1 < α ≤ 2, (1.2)

where A is a linear operator of sectorial negative type on a complex Banach space.
In [13], the authors proved the existence and uniqueness of almost automorphic
mild solutions to (1.2), then the same topic are explored in [17] but f is almost
automorphic function in Stepanov-like sense. Since then, different kinds of almost
automorphic mild solutions of (1.2) are investigated by many authors. Existence
and uniqueness of asymptotically automorphic automorphic mild solutions of (1.2)
are studied in [38]. For pseudo almost automorphy of (1.2), in [14], the authors
investigate existence, uniqueness of pseudo almost automorphic mild solutions, and
generalized in [28]; weighted pseudo almost automorphic mild solutions are consid-
ered in [29], reconsidered in [12] if the nonlinear term is Sp-weighted pseudo almost
automorphic perturbation; existence and uniqueness of µ-pseudo almost automor-
phic mild solutions of (1.2) are studied in [11] by measure theory.

For (1.2) with infinite delay, that is the following fractional functional differential
equations

Dα
t u(t)−Au(t) = Dα−1

t f(t, ut), t ∈ R, 1 < α ≤ 2, (1.3)

where the history xt : (−∞, 0] → X defined by xt(θ) = x(t + θ), belongs to some
abstract phase space B (see for instance Hino’s et al. [25]) which will be defined later.
For almost automorphy of (1.3), the authors investigate the existence, uniqueness
of weighted pseudo almost automorphic mild solutions in [2].

Recently, motivated by natural and widespread applicability in several fields
of sciences and technology, the following two-term fractional differential equations
increasingly begin to receive attention:

Dα+1
t u(t) + γDβ

t u(t)−Au(t) = Dα
t f(t, u(t)), t ∈ R, 0 < α ≤ β ≤ 1, γ ≥ 0,

(1.4)

In [15], by generalization of the semigroup theory, the authors show existence, u-
niqueness of S-asymptotically ω-periodic mild solution of (1.4). In [3], pseudo
asymptotic behavior for mild solutions of (1.4) are studied, the authors analyzed
the existence, uniqueness of pseudo asymptotic mild solutions which in particular
includes the classes of pseudo periodic, pseudo almost periodic and pseudo (com-
pact) almost automorphic functions. Weighted pseudo almost automorphy of (1.4)
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are studied in [4] if the forcing term f is Sp-weighted pseudo almost automorphic.
However, for (1.4) with delay, that is following two-term fractional functional dif-
ferential equations (FFDEs)

Dα+1
t u(t) + γDβ

t u(t)−Au(t) = Dα
t f(t, ut), t ∈ R, 0 < α ≤ β ≤ 1, γ ≥ 0.

(1.5)

For (1.5), to the best of our knowledge, there is no work reported in literature,
particularly, (µ, ν)-pseudo almost automorphy of (1.5) is quite new and an untreated
topic. This is one of the key motivations of this study. In this paper, if the nonlinear
term f is (µ, ν)-pseudo almost automorphic perturbation (or in Stepanov-like sense),
non-Lipschitz perturbation, (µ, ν)-pseudo almost automorphy of (1.5) with finite
delay and infinite delay are discussed, respectively.

The paper is organized as follows. In Section 2, some notations and preliminary
results are presented. By measure theory, we introduce the concepts (µ, ν)-pseudo
almost automorphic of class r (class infinity), Stepanov-like (µ, ν)-pseudo almost
automorphic of class r (class infinity), explore some properties and establish compo-
sition theorems, respectively. In Section 3, we investigate the existence, uniqueness
of (µ, ν)-pseudo almost automorphic of class r mild solution for (3.1) with finite
delay under PAA perturbation, SpPAA perturbation, and non-Lipschitz perturba-
tion, respectively. In Section 4, we explore the same topic for (3.1) with infinite
delay. In Section 5, we present an application to a fractional partial differential
equation with delay.

2. Preliminaries and basic results

Let (X, ‖·‖), (Y, ‖·‖) be two complex Banach spaces and N, R, R+, and C stand for
the set of natural numbers, real numbers, nonnegative real numbers, and complex
numbers, respectively. R(u) denotes the range of u(·). For A being a linear operator,
D(A), ρ(A), R(λ,A), σ(A) stand for the domain, the resolvent set, the resolvent
and spectrum of A. In order to facilitate the discussion below, we further introduce
the following notations:

• C(R, X) (resp. C(R × Y,X)): the set of continuous functions from R to X
(resp. from R× Y to X).

• C := C([−r, 0], X) denotes the space of continuous function from [−r, 0] to X
with the supremum norm.

• BC(R, X) (resp. BC(R × Y,X)): the Banach space of bounded continuous
functions from R to X (resp. from R× Y to X) with the supremum norm.

• L(X,Y ): the Banach space of bounded linear operators from X to Y endowed
with the operator topology. In particular, we write L(X) when X = Y .

• Lp(R, X): the space of all classes of equivalence (with respect to the equality
almost everywhere on R) of measurable functions f : R→ X such that ‖f‖ ∈
Lp(R,R).

• Lploc(R, X): the space of all classes of equivalence of measurable functions
f : R→ X such that the restriction of f to every bounded subinterval of R is
in Lp(R, X).
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2.1. Fraction derivative and sectorial operator

Let α > 0 be given, we denote

gα(t) :=
tα−1

Γ(α)
, t > 0,

where Γ is the Gamma function. Given a vector-valued function u : R → X, the
Weyl fractional integral of order α > 0 is defined by

D−αt u(t) :=

∫ t

−∞
gα(t− s)u(s)ds, t ∈ R,

when the integral is convergent. The Weyl fractional derivative Dα
t u of order α > 0

is defined by

Dα
t u(t) :=

dn

dtn
D
−(n−α)
t u(t), t ∈ R,

where n = [α] + 1. It is known that Dα
t D
−α
t u(t) = u(t) for any α > 0. One can

see [31] for more information and further details.
In order to give an operator theoretical approach to fractional functional differ-

ential equations, we recall the following definition.

Definition 2.1 ( [27]). A closed and densely defined linear operator A is said to
ω-sectorial of angle θ if there exist θ ∈ [0, π/2) and ω ∈ R such that its resolvent
exists in the sector

ω + Sθ := {ω + λ : λ ∈ C, |arg(λ)| < π/2 + θ} \{ω}∥∥(λI −A)−1
∥∥ ≤ M

|λ− ω|
, λ ∈ ω + Sθ. (2.1)

In the case ω = 0, we merely say that A is sectorial of angle θ.

We should mention that in the general theory of sectorial operator, it is not
required that (2.1) holds in a sector of angle π/2. Our restriction corresponds to
the class of operators used in this paper.

Definition 2.2 ( [27]). Let γ ≥ 0, 0 ≤ α, β ≤ 1 be given. Let A be a closed
and linear operator with domain D(A) defined on a Banach space X. We call A
the generator of an (α, β)γ-regularized family if there exist ω ≥ 0 and a strongly
continuous function Sα,β : R+ → L(X) such that {λα+1 + γλβ : Reλ > ω} ⊂ ρ(A)
and

λα(λα+1 + γλβ −A)−1x =

∫ ∞
0

e−λtSα,β(t)xdt, Reλ > ω, x ∈ X.

Because of the uniqueness theorem for the Laplace transform, if γ = 0, α =
0, this corresponds to the case of a C0-semigroup, whereas the case γ = 0, α =
1 corresponds to the concept of cosine family. For more details on the Laplace
transform approach to semigroups and cosine functions, we refer to [5].

Sufficient conditions to existence and the integrability for the generators of an
(α, β)γ-regularized family are given in the following results which corresponds to an
extension of Cuesta’s theorem [16] in the case γ = 0.
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Theorem 2.1 ( [27]). Let 0 < α ≤ β ≤ 1, γ > 0 and ω < 0. Assume that A is
an ω-sectorial of angle βπ/2, then A generates an (α, β)γ-regularized family Sα,β(t)
satisfying

‖Sα,β(t)‖ ≤ C

1 + |ω|(tα+1 + γtβ)
, t ≥ 0, (2.2)

for constant C > 0 depending only on α, β.

Note that ∫ ∞
0

1

1 + |ω|tα+1
dt =

|ω|−1/(α+1)π

(α+ 1) sin(π/(α+ 1))
(2.3)

for 0 < α < 1, therefore Sα,β(t) is integrable on (0,∞).

2.2. PAA of class r

Definition 2.3 (Bochner [8]). A function f ∈ C(R, X) is said to be almost au-
tomorphic in Bochner’s sense if for every sequence of real numbers (s

′

n)n∈N, there
exists a subsequence (sn)n∈N such that g(t) := lim

n→∞
f(t + sn) is well defined for

each t ∈ R, and lim
n→∞

g(t− sn) = f(t) for each t ∈ R.

The almost automorphic functions (denoted by AA(R, X)), which generalize
the concept of (Bochner) almost periodic function, constitute a Banach space when
endowed with the supremum norm.

Lemma 2.1 ( [10]). If f, f1, f2 ∈ AA(R, X), then

(i) f1 + f2 ∈ AA(R, X);

(ii) λf ∈ AA(R, X) for any scalar λ;

(iii) fτ ∈ AA(R, X) where fτ : R→ X is defined by fτ (·) := f(·+ τ);

(iv) the range R(f) := {f(t) : t ∈ R} is relatively compact in X, thus f is bounded
in norm;

(v) if fn → f uniformly on R where each fn ∈ AA(R, X), then f ∈ AA(R, X)
too.

Next, we introduce the concept of (µ, ν)-pseudo almost automorphic function
by the results of measure theory. B denotes the Lebesgue σ-field of R, M stands
for the set of all positive measure µ on B satisfying µ(R) =∞ and µ([a, b]) <∞ for
all a, b ∈ R (a ≤ b).

Definition 2.4 ( [6]). Let µ, ν ∈M, The measure µ and ν are said to be equivalent
(i.e., µ ∼ ν) if there exist constants c0, c1 > 0 and a bounded interval I ⊂ R
(eventually ∅) such that

c0ν(A) ≤ µ(A) ≤ c1ν(A)

for all A ∈ B satisfying A ∩ I = ∅.

For µ ∈M, τ ∈ R, we denote µτ the positive measure on (R,B) defined by

µτ (A) = µ({a+ τ : a ∈ A}) for A ∈ B. (2.4)

In this paper, we formulate the following hypotheses:
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(M1) Let µ, ν ∈M such that

lim sup
T→∞

µ([−T, T ])

ν([−T, T ])
<∞.

(M2) Let µ, ν ∈M such that for all τ ∈ R, there exist β > 0 and a bounded interval
I such that µτ (A) ≤ βµ(A), ντ (A) ≤ βν(A) if A ∈ B satisfies A ∩ I = ∅.

Lemma 2.2 ( [6]). Let µ, ν ∈M, then µ, ν satisfy (M2) if and only if µ ∼ µτ and
ν ∼ ντ for all τ ∈ R.

Lemma 2.3 ( [6]). If (M2) hold, then for all σ > 0,

lim sup
T→∞

ν([−T − σ, T + σ])

ν([−T, T ])
<∞.

Let µ, ν ∈M, define the (µ, ν)-ergodic space

PAA0(R, X, µ, ν) =

{
f ∈ BC(R, X) : lim

T→∞

1

ν([−T, T ])

∫
[−T,T ]

‖f(t)‖dµ(t) = 0

}
.

PAA0(R×X,X, µ, ν) := {f ∈ BC(R×X,X) :

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

‖f(t, u)‖dµ(t) = 0 uniformly in u ∈ X

}
.

Definition 2.5 ( [20]). Let µ, ν ∈M. A function f ∈ C(R, X) (resp. C(R×X,X)
) is called (µ, ν)-pseudo almost automorphic if it can be decomposed as f = g +
h, where g ∈ AA(R, X) (resp. AA(R × X,X)) and h ∈ PAA0(R, X, µ, ν) (resp.
PAA0(R × X,X, µ, ν)). Denote by PAA(R, X, µ, ν) (resp. PAA(R × X,X, µ, ν))
the set of such functions.

Lemma 2.4 ( [20]). Let µ, ν ∈ M, (M2) hold and f ∈ PAA(R, X, µ, ν) be such
that f = g + h, where g ∈ AA(R, X), h ∈ PAA0(R, X, µ, ν), then {g(t) : t ∈ R} ⊂
{f(t) : t ∈ R}.

To deal with the differential equations with finite delay, we introduce the concept
of (µ, ν)-pseudo almost automorphic of class r. For each r > 0, define (µ, ν)-ergodic
space of class r:

PAA0(R, X, µ, ν, r) = {f ∈ BC(R, X) :

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t) = 0

}
.

PAA0(R×X,X, µ, ν, r) := {f ∈ BC(R×X,X) :

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ, u)‖

)
dµ(t) = 0 uniformly in u ∈ X

}
.

Definition 2.6. Let µ, ν ∈ M. A function f ∈ C(R, X) (resp. C(R × X,X) )
is called (µ, ν)-pseudo almost automorphic of class r if it can be decomposed as
f = g+ h, where g ∈ AA(R, X) (resp. AA(R×X,X)) and h ∈ PAA0(R, X, µ, ν, r)
(resp. PAA0(R × X,X, µ, ν, r)). Denote by PAA(R, X, µ, ν, r) (resp. PAA(R ×
X,X, µ, ν, r)) the set of such functions.
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Remark 2.1. (i) If µ ∼ ν, (µ, ν)-pseudo almost automorphic function of class
r (PAA(R, X, µ, ν, r)) is µ-pseudo almost automorphic function of class r
(PAA(R, X, µ, r)) which defined in [9].

(ii) Let ρ(t) > 0 a.e. on R for the Lebesgue measure. µ, ν denote the positive
measure defined by

µ(A) = ν(A) =

∫
A

ρ(t)dt for A ∈ B,

where dt denotes the Lebesgue measure on R, then (µ, ν)-pseudo almost au-
tomorphic function of class r (PAA(R, X, µ, ν, r)) is weighted pseudo almost
automorphic function of class r (WPAA(R, X, ρ, r)) which defined in [35].

(iii) If µ ∼ ν and µ, ν are the Lebesgue measures, then (µ, ν)-pseudo almost auto-
morphic function of class r (PAA(R, X, µ, ν, r)) is pseudo almost automorphic
function of class r (PAA(R, X, r)) which defined in [23].

Next, we show some properties of the space PAA(R, X, µ, ν, r). First, we give
the characterization of (µ, ν)-ergodic functions in terms of the measures µ, ν.

Lemma 2.5. Let I be a bounded interval (eventually I = ∅). Assume that (M1)
hold and f ∈ BC(R, X), then the following assertions are equivalent:

(i) f ∈ PAA0(R, X, µ, ν, r).

(ii) lim
T→∞

1

ν([−T, T ]\I)

∫
[−T,T ]\I

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t) = 0.

(iii) For any ε > 0,

lim
T→∞

µ

({
t ∈ [−T, T ]\I : sup

θ∈[t−r,t]
‖f(θ)‖ > ε

})
ν([−T, T ]\I)

= 0.

Proof. The proof is similar to the one given in [6], but here we deal with the case
of finite delay. In fact, we have

Case I: (i)⇔ (ii). Denote by

A = ν(I), B =

∫
I

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t), E = µ(I).

Since I is bounded and f ∈ BC(R, X), then A,B,E are finite. Let T > 0 be such
that I ⊂ [−T, T ] and ν([−T, T ]\I) > 0, one has

1

ν([−T, T ]\I)

∫
[−T,T ]\I

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)

=
1

ν([−T, T ])− A

(∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)− B

)

=
ν([−T, T ])

ν([−T, T ])− A

[
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)− B

ν([−T, T ])

]
,
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since ν(R) = +∞, we deduce that (ii) is equivalent to

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t) = 0,

that is (i) holds.
Case II: (ii)⇒ (iii). Assume that (ii) holds. Denote by

AεT (f) =

{
t ∈ [−T, T ]\I : sup

θ∈[t−r,t]
‖f(θ)‖ > ε

}
,

BεT (f) =

{
t ∈ [−T, T ]\I : sup

θ∈[t−r,t]
‖f(θ)‖ ≤ ε

}
,

then ∫
[−T,T ]\I

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t) =

∫
AεT (f)

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)

+

∫
BεT (f)

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t). (2.5)

Suppose the contrary, that there exists ε0 > 0, such that
µ(AεT (f))

ν([−T, T ]\I)
does not

converge to 0 as T →∞, then there exists δ > 0, such that for each n,

µ(Aε0Tn(f))

ν([−Tn, Tn]\I)
≥ δ for some Tn > n.

Hence

1

ν([−Tn, Tn]\I)

∫
[−Tn,Tn]\I

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)

≥ 1

ν([−Tn, Tn]\I)

∫
Aε0Tn (f)

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)

≥
µ(Aε0Tn(f))

ν([−Tn, Tn]\I)
ε0

≥ ε0δ,

which contradicts the fact that

lim
T→∞

∫
[−T,T ]\I

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t) = 0.

Thus (iii) holds.
Case III: (iii)⇒ (ii). Assume that (iii) holds, that is

lim
T→∞

µ(AεT (f))

ν([−T, T ] \ I)
= 0. (2.6)
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By (2.5), for T large enough, one has

1

ν([−T, T ]\I)

∫
[−T,T ]\I

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)

≤ 1

ν([−T, T ]\I)

∫
AεT (f)

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)

+
1

ν([−T, T ]\I)

∫
BεT (f)

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)

≤ ‖f‖µ(AεT (f))

ν([−T, T ]\I)
+

µ(BεT (f))ε

ν([−T, T ]\I)

≤ ‖f‖µ(AεT (f))

ν([−T, T ]\I)
+
µ([−T, T ]\I)ε

ν([−T, T ]\I)

=
‖f‖µ(AεT (f))

ν([−T, T ]\I)
+
µ([−T, T ])− E
ν([−T, T ])− A

ε

=
‖f‖µ(AεT (f))

ν([−T, T ]\I)
+
µ([−T, T ])

ν([−T, T ])
×

1− E
µ([−T,T ])

1− A
ν([−T,T ])

ε.

Since (2.6), (M1) hold and µ(R) = ν(R) =∞, then for all ε > 0, one has

lim sup
T→∞

1

ν([−T, T ]\I)

∫
[−T,T ]\I

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t) ≤ ηε,

where η := lim sup
T→∞

µ([−T,T ])
ν([−T,T ]) is a constant. Hence (ii) holds.

Proposition 2.1. Assume that (M1) hold. If µi, νi ∈ M, (i = 1, 2) and µ1 ∼ µ2,
ν1 ∼ ν2, then PAA0(R, X, µ1, ν1, r) = PAA0(R, X, µ2, ν2, r) and PAA(R, X, µ1, ν1, r) =
PAA(R, X, µ2, ν2, r).

Proof. Since µ1 ∼ µ2, ν1 ∼ ν2 and B is the Lebesgue σ-field, by Definition 2.4,
for all A ∈ B satisfying A ∩ [−T, T ] = ∅, there exists αi > 0, βi > 0, (i = 1, 2) such
that

α1µ2(A) ≤ µ1(A) ≤ β1µ2(A), α2ν2(A) ≤ ν1(A) ≤ β2ν2(A).

For T sufficiently large, one has

α1

β2
×
µ2

({
t ∈ [−T, T ]\I : sup

θ∈[t−r,t]
‖f(θ)‖ > ε

})
ν2([−T, T ]\I)

≤
µ1

({
t ∈ [−T, T ]\I : sup

θ∈[t−r,t]
‖f(θ)‖ > ε

})
ν1([−T, T ]\I)

≤ β1
α2
×
µ2

({
t ∈ [−T, T ]\I : sup

θ∈[t−r,t]
‖f(θ)‖ > ε

})
ν2([−T, T ]\I)

,

hence PAA0(R, X, µ1, ν1, r) = PAA0(R, X, µ2, ν2, r) by Lemma 2.5.
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Proposition 2.2. If (M1), (M2) hold and f ∈ PAA0(R, X, µ, ν, r), then f(·− τ) ∈
PAA0(R, X, µ, ν, r) for all τ ∈ R.

Proof. For ν ∈ M, since ν(R) = +∞, there exists T0 > 0 such that ν([−T −
|τ |, T + |τ |]) > 0 for all T > T0. Let

τ+ := max(τ, 0), τ− := max(−τ, 0),

then we have |τ |+ τ = 2τ+, |τ | − τ = 2τ−, so

[−T − |τ |+ τ, T + |τ |+ τ ] = [−T − 2τ−, T + 2τ+]. (2.7)

For T > T0 and τ ∈ R, we have

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ − τ)‖

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T−2τ−,T+2τ+]

(
sup

θ∈[t−r,t]
‖f(θ − τ)‖

)
dµ(t)

=
ν([−T − 2τ−, T + 2τ+])

ν([−T, T ])
Φτ (T )

≤ ν([−T − 2|τ |, T + 2|τ |])
ν([−T, T ])

Φτ (T ), (2.8)

where

Φτ (T ) :=
1

ν([−T − 2τ−, T + 2τ+])

∫
[−T−2τ−,T+2τ+]

(
sup

θ∈[t−r,t]
‖f(θ − τ)‖

)
dµ(t).

By (2.4) and (2.7), one has

Φτ (T )

=
1

ν([−T − |τ |+ τ, T + |τ |+ τ ])

∫
[−T−|τ |+τ,T+|τ |+τ ]

(
sup

θ∈[t−r,t]
‖f(θ − τ)‖

)
dµ(t)

=
1

ντ ([−T − |τ |, T + |τ |])

∫
[−T−|τ |+τ,T+|τ |+τ ]

(
sup

θ∈[t−τ−r,t−τ ]
‖f(θ)‖

)
dµ(t)

=
1

ντ ([−T − |τ |, T + |τ |])

∫
[−T−|τ |,T+|τ |]

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµτ (t).

Note that µ ∼ µτ , ν ∼ ντ by Lemma 2.2, then f ∈ PAA0(R, X, µτ , ντ , r) by
Proposition 2.1, so

lim
T→∞

Φτ (T ) = 0.

By (2.8) and Lemma 2.3, one has

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ − τ)‖

)
dµ(t) = 0,

that is f(· − τ) ∈ PAA0(R, X, µ, ν, r) for all τ ∈ R.
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Remark 2.2. By Proposition 2.2, PAA0(R, X, µ, ν, r) is translation invariant, thus
PAA(R, X, µ, ν, r) is translation invariant.

Proposition 2.3. If (M1), (M2) hold and r > 0, then

(i) PAA0(R, X, µ, ν, r) ⊂ PAA0(R, X, µ, ν), PAA(R, X, µ, ν, r) ⊂ PAA(R, X, µ, ν).

(ii) PAA0(R, X, µ, ν, r) is a closed subspace of BC(R, X).

(iii) PAA(R, X, µ, ν, r) is a Banach space under the supremum norm.

Proof. From the estimate

1

ν([−T, T ])

∫
[−T,T ]

‖f(t)‖dµ(t) ≤ 1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t),

hence it is easy to see that (i) holds.
Let fn ∈ PAA0(R, X, µ, ν, r) and fn → f in BC(R, X), then

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)

=
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖fn(θ)‖

)
dµ(t)

+
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)‖ − sup

θ∈[t−r,t]
‖fn(θ)‖

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖fn(θ)‖

)
dµ(t)

+
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)− fn(θ)‖

)
dµ(t),

which yields that f ∈ PAA0(R, X, µ, ν, r) since (M1) holds, then (ii) holds.
Let fn = gn + hn be a Cauchy sequence in PAA(R, X, µ, ν, r), where gn ∈

AA(R, X), hn ∈ PAA0(R, X, µ, ν, r). By (i) and Lemma 2.4, one has gn, hn are
Cauchy sequences. Noting that AA(R, X) and PAA0(R, X, µ, ν, r) are closed sub-
spaces of BC(R, X), there exist g ∈ AA(R, X), h ∈ PAA0(R, X, µ, ν, r) such that

gn → g, hn → h, n→∞.

Let f = g+ h, then fn → f and f ∈ PAA(R, X, µ, ν, r). Therefore (iii) holds.

Proposition 2.4. If (M1), (M2) hold and r1 > 0, r2 > 0, then

PAA0(R, X, µ, ν, r1) = PAA0(R, X, µ, ν, r2), (R, X, µ, ν, r1) = PAA(R, X, µ, ν, r2).

Proof. Let r > 0, first we show that

PAA0(R, X, µ, ν, r) ⊂ PAA0(R, X, µ, ν, 2r). (2.9)

For f ∈ PAA0(R, X, µ, ν, r), one has

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−2r,t]
‖f(θ)‖

)
dµ(t)
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≤ 1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−2r,t−r]
‖f(θ)‖

)
dµ(t)

+
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ − r)‖

)
dµ(t)

+
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖f(θ)‖

)
dµ(t),

by Proposition 2.2, one has

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−2r,t]
‖f(θ)‖

)
dµ(t) = 0,

thus f ∈ PAA0(R, X, µ, ν, 2r). Hence (2.9) holds.
Now, let r1 > r2 > 0, if f ∈ PAA0(R, X, µ, ν, r1), then

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r1,t]
‖f(θ)‖

)
dµ(t) = 0.

From

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r2,t]
‖f(θ)‖

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r1,t]
‖f(θ)‖

)
dµ(t),

then

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r2,t]
‖f(θ)‖

)
dµ(t) = 0,

so f ∈ PAA0(R, X, µ, ν, r2), i.e., one has

PAA0(R, X, µ, ν, r1) ⊂ PAA0(R, X, µ, ν, r2). (2.10)

On the other hand, since r1 > r2, there exists k ∈ N such that 2kr2 > r1. By (2.9),
(2.10), one has

PAA0(R, X, µ, ν, r2) ⊂ PAA0(R, X, µ, ν, 2kr2) ⊂ PAA0(R, X, µ, ν, r1).

Thus,
PAA0(R, X, µ, ν, r1) = PAA0(R, X, µ, ν, r2)

and
PAA(R, X, µ, ν, r1) = PAA(R, X, µ, ν, r2).

The proof is complete.
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Remark 2.3. It is interesting that PAA0(R, X, µ, ν, r) = PAA0(R, X, µ, ν, 1) for
all r > 0 by Proposition 2.4, but for r = 0, it is not necessarily holds, i.e.,
PAA0(R, X, µ, ν, 0) = PAA0(R, X, µ, ν, 1) is not true. The similarly results hold
for PAA(R, X, µ, ν, r).

Now, we establish the composition theorem for PAA(R, X, µ, ν, r).

Theorem 2.2. Assume that (M1) holds, f = g+h ∈ PAA(R×Y,X, µ, ν, r), where
g ∈ AA(R× Y,X), h ∈ PAA0(R× Y,X, µ, ν, r) and

(I1) There exists a continuous function Lf : R→ R+ such that

lim sup
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
Lf (θ)

)
dµ(t) < +∞.

(I2) ∀ε > 0, there exists δ > 0 such that for u, v ∈ Y with ‖u− v‖ < δ, one has

‖f(t, u)− f(t, v)‖ ≤ Lf (t)ε, t ∈ R,

(I3) For all bounded subset B of Y , f is bounded on R×B.

(I4) g(t, x) is uniformly continuous in any compact subset K ⊂ Y uniformly for
t ∈ R.

Then f(·, x(·)) ∈ PAA(R, X, µ, ν, r) if x ∈ PAA(R, Y, µ, ν, r).

Proof. Let f = g + h, x = α + β, where α ∈ AA(R, Y ), β ∈ PAA0(R, Y, µ, ν, r),
g ∈ AA(R × Y,X), and h ∈ PAA0(R × Y,X, µ, ν, r). Now the function f can be
decomposed as

f(t, x(t)) = g(t, α(t)) + f(t, x(t))− g(t, α(t))

= g(t, α(t)) + f(t, x(t))− f(t, α(t)) + h(t, α(t)).

Set

F (t) = g(t, α(t)), G(t) = f(t, x(t))− f(t, α(t)), H(t) = h(t, α(t)).

Let

F = sup
t∈R,u∈B

‖f(t, u)‖, L = lim sup
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
Lf (θ)

)
dµ(t),

by the assumptions, F,L < +∞. It is not difficult to see that the function t →
f(t, x(t)) is continuous and bounded, and F (·) ∈ AA(R, X).

For any ε > 0, let δ be as in the assumptions, and

Mδ
T (β) =

{
t ∈ [−T, T ] : sup

θ∈[t−r,t]
‖β(θ)‖ > δ

}
.

Note that β ∈ PAA0(R, Y, µ, ν, r), for above δ > 0, by Lemma 2.5, one has

lim
T→∞

µ(Mδ
T (β))

ν([−T, T ])
= 0. (2.11)
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In addition, for all t ∈ [−T, T ]\Mδ
T (β), one has

sup
θ∈[t−r,t]

‖β(θ)‖ < δ,

which means that

sup
θ∈[t−r,t]

‖G(θ)‖ = sup
θ∈[t−r,t]

‖f(θ, x(θ))− f(θ, α(θ))‖ ≤

(
sup

θ∈[t−r,t]
Lf (θ)

)
ε,

then

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖G(θ)‖

)
dµ(t)

≤ 1

ν([−T, T ])

∫
MδT (β)

(
sup

θ∈[t−r,t]
‖G(θ)‖

)
dµ(t)

+
1

ν([−T, T ])

∫
[−T,T ]\MδT (β)

(
sup

θ∈[t−r,t]
‖G(θ)‖

)
dµ(t)

≤ 2Fµ(Mδ
T (β))

ν([−T, T ])
+

ε

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
Lf (θ)

)
dµ(t),

by (2.11), one has

lim sup
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖G(θ)‖

)
dµ(t) ≤ Lε,

by the arbitrariness of ε, one has

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖G(θ)‖

)
dµ(t) = 0,

that is G(·) ∈ PAA0(R, X, µ, ν, r).
It remains to show that H(·) ∈ PAA0(R, X, µ, ν, r). Let K = {α(t) : t ∈ R},

then K is compact and g is uniformly continuous on R ×K. Thus, for any ε > 0,
there exists δ′ > 0 such that

‖h(t, u)− h(t, v)‖ ≤ ‖f(t, u)− f(t, v)‖+ ‖g(t, u)− g(t, v)‖ ≤ (Lf (t) + 1)ε

for all t ∈ R, u, v ∈ K with ‖u− v‖ ≤ δ′. Let x1, x2, . . . , xm ∈ K be such that

K ⊂
m⋃
i=1

B(xi, δ
′).

Then, for all t ∈ R, there exists xi such that ‖α(t)− xi‖ < δ′, which gives that

‖H(t)‖ = ‖h(t, α(t))‖ ≤ ‖h(t, α(t))−h(t, xi)‖+‖h(t, xi)‖ ≤ (Lf (t)+1)ε+

m∑
i=1

‖h(t, xi)‖.



1618 Z. N. Xia & J. L. Chai

Since

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖H(θ)‖

)
dµ(t)

≤ ε

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
Lf (θ) + 1

)
dµ(t)

+

m∑
i=1

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖h(θ, xi)‖

)
dµ(t),

and h(·, xi) ∈ PAA0(R, X, µ, ν, r) for each i = 1, 2 . . . ,m, we have

lim sup
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖H(θ)‖

)
dµ(t) ≤ (L + η)ε,

which yields that

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖H(θ)‖

)
dµ(t) = 0,

that is H(·) ∈ PAA0(R, X, µ, ν, r). Therefore, f(·, x(·)) ∈ PAA(R, X, µ, ν, r).

2.3. SpPAA of class r

First, we introduce the space of Stepanov bounded functions [32]. Let p ∈ [1,∞), the
space BSp(R, X) of all Stepanov bounded functions with the exponent p, consists
of all measurable functions f : R → X such that f b ∈ L∞(R, Lp([0, 1];X)), where
f b is the Bochner transform of f defined by f b(t, s) := f(t + s), t ∈ R, s ∈ [0, 1].
BSp(R, X) is a Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖pdτ
)1/p

.

It is obvious that Lp(R, X) ⊂ BSp(R, X) ⊂ Lploc(R, X) andBSp(R, X) ⊂ BSq(R, X)
for p ≥ q ≥ 1.

Definition 2.7. The space SpAA(R, X) of Stepanov-like almost automorphic func-
tions (or Sp-almost automorphic functions) consists of all f ∈ BSp(R, X) such that
f b ∈ AA(R, Lp([0, 1], X)).

In other words, a function f ∈ Lploc(R, X) is said to be Stepanov-like almost au-
tomorphic if its Bochner transform f b : R→ Lp([0, 1], X) is almost automorphic in
the sense that for every sequence of real numbers (s

′

n)n∈N, there exist a subsequence
(sn)n∈N and a function g ∈ Lploc(R, X) such that

lim
n→∞

(∫ 1

0

‖f(t+ s+ sn)− g(t+ s)‖pds
)1/p

= 0,

lim
n→∞

(∫ 1

0

‖g(t+ s− sn)− f(t+ s)‖pds
)1/p

= 0
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pointwisely on R. The collection of all such functions will be denoted by SpAA(R, X).
It is clear that, for 1 ≤ p < q <∞, if f ∈ Lqloc(R, X) is Sq-almost automorphic,

then f is Sp-almost automorphic. In addition, if f ∈ AA(R, X), then f is Sp-almost
automorphic for any 1 ≤ p <∞.

Definition 2.8. A function f : R × X → X, (t, u) → f(t, u) with f(·, u) ∈
Lploc(R, X) for each u ∈ X is said to be Sp-almost automorphic in t ∈ R uniformly

for u ∈ X if for every sequence of real numbers (s
′

n)n∈N, there exist a subsequence
(sn)n∈N and a function g : R×X → X with g(·, u) ∈ Lploc(R, X) such that

lim
n→∞

(∫ 1

0

‖f(t+ s+ sn, u)− g(t+ s, u)‖pds
)1/p

= 0,

and

lim
n→∞

(∫ 1

0

‖g(t+ s− sn, u)− f(t+ s, u)‖pds
)1/p

= 0,

for each t ∈ R and for each u ∈ X. We denote by SpAA(R ×X,X) the set of all
such functions.

Next, we introduce the concept of Stepanov-like (µ, ν)-pseudo almost automor-
phic function by the results of measure theory.

For r > 0, define

SpPAA0(R, X, µ, ν) = {f ∈ BSp(R, X) :

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(∫ t+1

t

‖f(σ)‖pdσ
)1/p

dµ(t) = 0

}
,

SpPAA0(R, X, µ, ν, r) = {f ∈ BSp(R, X) :

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

 sup
θ∈[t−r,t]

(∫ θ+1

θ

‖f(σ)‖pdσ

)1/p
 dµ(t) = 0

 .

Definition 2.9. Let µ, ν ∈ M. A function f ∈ BSp(R, X) is said to be Stepanov-
like (µ, ν)-pseudo almost automorphic (or Sp-(µ, ν)-pseudo almost automorphic) if it
can be decomposed as f = g+h, where g ∈ SpAA(R, X) and h ∈ SpPAA0(R, X, µ, ν).
Denote by SpPAA(R, X, µ, ν) the collection of such functions.

Definition 2.10. Let µ, ν ∈ M. A function f : R×X → X, (t, u)→ f(t, u) with
f(·, u) ∈ BSp(R, X) for each u ∈ X is said to be Sp-(µ, ν)-pseudo almost automor-
phic if it can be decomposed as f = g + h, where gb ∈ AA(R × X,Lp([0, 1], X))
and hb ∈ PAA0(R×X,Lp([0, 1], X), µ, ν). The collection of such functions will be
denoted by SpPAA(R×X,X, µ, ν).

Definition 2.11. Let µ, ν ∈M. A function f ∈ BSp(R, X) is said to be Stepanov-
like (µ, ν)-pseudo almost automorphic of class r (or Sp-(µ, ν)-pseudo almost auto-
morphic of class r) if it can be decomposed as f = g + h, where g ∈ SpAA(R, X)
and h ∈ SpPAA0(R, X, µ, ν, r). Denote by SpPAA(R, X, µ, ν, r) the collection of
such functions.

In other words, a function f ∈ Lploc(R, X) is said to be Sp-(µ, ν)-pseudo almost
automorphic of class r if its Bochner transform f b : R → Lp([0, 1], X) is (ν, ν)-
pseudo almost automorphic of class r in the sense that there exist two functions
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g, h : R → X such that f = g + h, where gb ∈ AA(R, Lp([0, 1], X)) and hb ∈
PAA0(R, Lp([0, 1], X), µ, ν, r), i.e.,

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

 sup
θ∈[t−r,t]

(∫ θ+1

θ

‖h(σ)‖pdσ

)1/p
 dµ(t) = 0.

Remark 2.4. (i) If µ ∼ ν, then Sp-(µ, ν)-pseudo almost automorphic function
of class r (SpPAA(R, X, µ, ν, r)) is Sp-µ-pseudo almost automorphic of class
r (SpPAA(R, X, µ, r)) which defined in [9].

(ii) Let ρ(t) > 0 a.e. on R for the Lebesgue measure. µ, ν denote the positive
measure defined by

µ(A) = ν(A) =

∫
A

ρ(t)dt for A ∈ B,

where dt denotes the Lebesgue measure on R, then Sp-(µ, ν)-pseudo almost
automorphic function of class r (SpPAA(R, X, µ, ν, r)) is Sp-weighted pseudo
almost automorphic function of class r (SpWPAA(R, X, ρ, r)) defined in [39].

(iii) If µ ∼ ν and µ, ν are the Lebesgue measures, then Sp-(µ, ν)-pseudo almost
automorphic of class r (SpPAA(R, X, µ, ν, r)) is Stepanov-like pseudo almost
automorphic of class r (SpPAA(R, X, r)).

Similarly as the proof of [18,19], the following result holds.

Lemma 2.6. If (M1), (M2) hold, then PAA0(R, X, µ, ν) ⊂ SpPAA0(R, X, µ, ν)
for each 1 ≤ p <∞.

For Sp-(µ, ν)-pseudo almost automorphic of class r, one has

Proposition 2.5. If (M1), (M2) hold, then PAA(R, X, µ, ν, r) ⊂ SpPAA(R, X, µ, ν, r)
for each 1 ≤ p <∞.

Proof. It suffices to show that PAA0(R, X, µ, ν, r) ⊂ SpPAA0(R, X, µ, ν, r). Let
f ∈ PAA0(R, X, µ, ν, r), then g ∈ PAA0(R,R, µ, ν), where

g(t) = sup
θ∈[t−r,t]

‖f(θ)‖ = sup
θ∈[−r,0]

‖f(t+ θ)‖, t ∈ R.

It follows from Lemma 2.6 that g ∈ SpPAA0(R,R, µ, ν). Thus, one has

1

ν([−T, T ])

∫
[−T,T ]

 sup
θ∈[t−r,t]

(∫ θ+1

θ

‖f(σ)‖pdσ

)1/p
 dµ(t)

=
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[−r,0]

(∫ 1

0

‖f(t+ θ + σ)‖pdσ
)1/p

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

[∫ 1

0

(
sup

θ∈[−r,0]
‖f(t+ θ + σ)‖

)p
dσ

]1/p
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

[∫ 1

0

|g(t+ σ)|p dσ
]1/p

dµ(t)
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=
1

ν([−T, T ])

∫
[−T,T ]

[∫ t+1

t

|g(σ)|p dσ
]1/p

dµ(t)→ 0, T →∞,

which means that f ∈ SpPAA(R, X, µ, ν, r).

Remark 2.5. By Proposition 2.5, it is not difficult to see that

PAA(R, X, r) ⇒ WPAA(R, X, ρ, r) ⇒ PAA(R, X, µ, r) ⇒ PAA(R, X, µ, ν, r)

⇓ ⇓ ⇓ ⇓

SpPAA(R, X, r)⇒ SpWPAA(R, X, ρ, r)⇒ SpPAA(R, X, µ, r) ⇒ SpPAA(R, X, µ, ν, r)

where “⇒ ” denotes subset relation “ ⊂ ”.

Similarly as the proof of [9], the following composition theorems hold for SpPAA(R, X, µ, ν, r)
under Lipschitz condition and non-Lipschitz condition, respectively.

Theorem 2.3. Assume that (M1) holds, f = g+h ∈ SpPAA(R×Y,X, µ, ν, r) with
gb ∈ AA(R× Y,Lp([0, 1], X)), hb ∈ PAA0(R× Y,Lp([0, 1], X), µ, ν, r) and

(J1) There exists a nonnegative function Lf ∈ Lp(R,R+), p > 1 such that

lim sup
T→∞

1

(ν([−T, T ]))1/p

[∫
[−T,T ]

(
sup

θ∈[t−r,t]
Lf (θ)

)p
dµ(t)

]1/p
< +∞.

(J2) For all u, v ∈ Y and t ∈ R, one has(∫ t+1

t

‖f(s, u)− f(s, v)‖pds
)1/p

≤ Lf (t)‖u− v‖.

(J3) g(t, x) is uniformly continuous in any bounded subset B ⊂ Y uniformly for
t ∈ R.

If x = α + β ∈ SpPAA(R, Y, µ, ν, r) with αb ∈ AA(R, Lp([0, 1], Y )) and βb ∈
PAA0(R, Lp([0, 1], Y ), µ, ν, r), K = {α(t) : t ∈ R} is compact in Y . Then f(·, x(·)) ∈
SpPAA(R, X, µ, ν, r).

Theorem 2.4. Assume that (M1) holds, f = g + h ∈ SpPAA(R × Y,X, µ, ν, r)
with gb ∈ AA(R× Y, Lp([0, 1], X)), hb ∈ PAA0(R× Y,Lp([0, 1], X), µ, ν, r) and the
following conditions satisfied:

(N1) f(t, x) is uniformly continuous in any bounded subset B ⊂ Y uniformly for
t ∈ R.

(N2) g(t, x) is uniformly continuous in any bounded subset B ⊂ Y uniformly for
t ∈ R.

(N3) For every bounded subset B ⊂ Y , {f(·, x) : x ∈ B} is bounded in SpPAA(R×
Y,X, µ, ν, r).

If x = α + β ∈ SpPAA(R, Y, µ, ν, r) with αb ∈ AA(R, Lp([0, 1], Y )) and βb ∈
PAA0(R, Lp([0, 1], Y ), µ, ν, r), K = {α(t) : t ∈ R} is compact in Y . Then f(·, x(·)) ∈
SpPAA(R, X, µ, ν, r).
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2.4. PAA(SpPAA) of class infinity

To deal with infinite delays, we introduce the following new spaces of functions:

PAA0(R, X, µ, ν,∞) :=
⋂
r>0

PAA0(R, X, µ, ν, r),

PAA0(R×X,X, µ, ν,∞) :=
⋂
r>0

PAA0(R×X,X, µ, ν, r),

PAA0(R, Lp([0, 1], X), µ, ν,∞) :=
⋂
r>0

PAA0(R, Lp([0, 1], X), µ, ν, r),

PAA0(R×X,Lp([0, 1], X), µ, ν,∞) :=
⋂
r>0

PAA0(R×X,Lp([0, 1], X), µ, ν, r),

It is not difficult to see that PAA0(R, X, µ, ν,∞) and PAA0(R, Lp([0, 1], X), µ, ν,∞)
are closed subspaces of PAA0(R, X, µ, ν, r), PAA0(R, Lp([0, 1], X), µ, ν, r), respec-
tively.

Definition 2.12. Let µ, ν ∈ M. A function f ∈ C(R, X) (resp. C(R ×X,X) ) is
called (µ, ν)-pseudo almost automorphic of class infinity if it can be decomposed as
f = g+h, where g ∈ AA(R, X) (resp. AA(R×X,X)) and h ∈ PAA0(R, X, µ, ν,∞)
(resp. PAA0(R×X,X, µ, ν,∞)). Denote by PAA(R, X, µ, ν,∞) (resp. PAA(R×
X,X, µ, ν,∞)) the set of such functions. It is not difficult to see that PAA(R, X, µ, ν,∞)
is a Banach space under the supremum norm.

Definition 2.13. Let µ, ν ∈M. A function f ∈ BSp(R, X) is said to be Stepanov-
like (µ, ν)-pseudo almost automorphic of class infinity (or Sp-(µ, ν)-pseudo almost
automorphic of class infinity) if it can be decomposed as f = g + h, where gb ∈
AA(R, Lp([0, 1], X)) and hb ∈ PAA0(R, Lp([0, 1], X), µ, ν,∞). SpPAA(R, X, µ, ν,∞)
stands for the collection of such functions. It is easy to see that PAA(R, X, µ, ν,∞) ⊂
SpPAA(R, X, µ, ν,∞).

Similar as the proof of Theorem 2.2, Theorem 2.3, the following composition the-
orems are hold for PAA(R×Y,X, µ, ν,∞), SpPAA(R×Y,X, µ, ν,∞), respectively,
that is

Theorem 2.5. Assume that (M1) holds, f = g + h ∈ PAA(R × Y,X, µ, ν,∞),
where g ∈ AA(R × Y,X), h ∈ PAA0(R × Y,X, µ, ν,∞) and (I1)-(I4) hold, then
f(·, x(·)) ∈ PAA(R, X, µ, ν,∞) if x ∈ PAA(R, Y, µ, ν,∞).

Theorem 2.6. Assume that (M1) holds, f = g+h ∈ SpPAA(R×Y,X, µ, ν,∞) with
gb ∈ AA(R × Y,Lp([0, 1], X)), hb ∈ PAA0(R × Y,Lp([0, 1], X), µ, ν,∞) and (J1)-
(J3) hold. If x = α + β ∈ SpPAA(R, Y, µ, ν,∞) with αb ∈ AA(R, Lp([0, 1], Y )),
βb ∈ PAA0(R, Lp([0, 1], Y ), µ, ν,∞) and K = {α(t) : t ∈ R} is compact in Y . Then
f(·, x(·)) ∈ SpPAA(R, X, µ, ν,∞).

3. FFDEs with finite delay

In this section, we establish some sufficient criteria for the existence and uniqueness
of PAA(R, X, µ, ν, r) mild solutions for the following fraction differential equations
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with finite delay:

Dα+1
t u(t) + γDβ

t u(t)−Au(t) = Dα
t f(t, ut), t ∈ R, 0 < α ≤ β ≤ 1, γ ≥ 0,

(3.1)

where ut(θ) := u(t + θ) for θ ∈ [−r, 0], r ≥ 0 is a fixed constant. The fractional
derivative is understood in the Weyl sense.

To establish our results, we introduce the following conditions:

(H1) A is an ω-sectorial operator of angle βπ/2 with ω < 0.

(H21) f = g+h ∈ PAA(R×C, X, µ, ν, r), where g ∈ AA(R×C, X), h ∈ PAA0(R×
C, X, µ, ν, r).

(H22) f = g + h ∈ SpPAA(R × C, X, µ, ν, r), where gb ∈ AA(R × C, Lp([0, 1], X)),
hb ∈ PAA0(R× C, Lp([0, 1], X), µ, ν, r).

(H23) f = g+h ∈ PAA(R×C, X, µ, ν,∞), where g ∈ AA(R×C, X), h ∈ PAA0(R×
C, X, µ, ν,∞).

(H24) f = g + h ∈ SpPAA(R× C, X, µ, ν,∞), where gb ∈ AA(R× C, Lp([0, 1], X)),
hb ∈ PAA0(R× C, Lp([0, 1], X), µ, ν,∞).

(H31) f satisfies the Lipschitz condition

‖f(t, φ)− f(t, ψ)‖ ≤ Lf‖φ− ψ‖C , φ, ψ ∈ C, t ∈ R,

where Lf > 0 is a constant.

(H32) f satisfies the Lipschitz condition

‖f(t, φ)− f(t, ψ)‖ ≤ Lf (t)‖φ− ψ‖C , φ, ψ ∈ C, t ∈ R,

where Lf ∈ C(R,R+).

(H33) f satisfies the Lipschitz condition

‖f(t, φ)− f(t, ψ)‖ ≤ Lf (t)‖φ− ψ‖C , φ, ψ ∈ C, t ∈ R,

where Lf ∈ BSp(R,R+).

(H34) f satisfies the Lipschitz condition

‖f(t, φ)− f(t, ψ)‖ ≤ Lf (t)‖φ− ψ‖C , φ, ψ ∈ C, t ∈ R,

where Lf ∈ BSp(R,R+) ∩ L1(R,R+).

(H4) g satisfies the Lipschitz condition

‖g(t, φ)− g(t, ψ)‖ ≤ Lg‖φ− ψ‖C , φ, ψ ∈ C, t ∈ R.

where Lg > 0 is a constant.

For (3.1), we adopt the following concept of mild solution.

Definition 3.1. Assume that the operatorA generates an integrable (α, β)γ-regularized
family {Sα,β(t)}t≥0. A function u ∈ C([−r,∞), X) is said to be a mild solution of
(3.1) if satisfying the following integral equation

u(t) =

∫ t

−∞
Sα,β(t− s)f(s, us)ds, t ∈ R. (3.2)
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3.1. PAA perturbation

In this subsection, if f satisfies the Lipschitz condition, we investigate existence,
uniqueness of PAA(R, X, µ, ν, r) mild solutions for (3.1) under PAA perturbation,
i.e., (H21) holds.

Lemma 3.1. If (M1), (M2) hold, u ∈ PAA(R, X, µ, ν, r), then ut ∈ PAA(R, C, µ, ν, r).

Proof. Suppose that u = α+β, where α ∈ AA(R, X) and β ∈ PAA0(R, X, µ, ν, r),
then ut = αt + βt and αt ∈ AA(R, C) by Lemma 2.1. Next, we will show that
βt ∈ PAA0(R, C, µ, ν, r). In fact, for ν ∈ M, r ≥ 0, since ν(R) = +∞, there exists
T0 > 0 such that ν([−T − r, T + r]) > 0 for all T > T0. Hence, for T > T0, one has

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−2r,t−r]
‖β(θ)‖

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T−r,T−r]

(
sup

θ∈[t−r,t]
‖β(θ)‖

)
dµr(t)

≤ 1

ν([−T, T ])

∫
[−T−r,T+r]

(
sup

θ∈[t−r,t]
‖β(θ)‖

)
dµr(t)

≤ νr([−T − r, T + r])

ν([−T, T ])
× 1

νr([−T − r, T + r])

∫
[−T−r,T+r]

(
sup

θ∈[t−r,t]
‖β(θ)‖

)
dµr(t).

Since µ ∼ µr, ν ∼ νr by Lemma 2.2, then β ∈ PAA0(R, X, µr, νr, r) by Proposition
2.1, so

lim
T→∞

1

νr([−T − r, T + r])

∫
[−T−r,T+r]

(
sup

θ∈[t−r,t]
‖β(θ)‖

)
dµr(t) = 0,

then

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−2r,t−r]
‖β(θ)‖

)
dµ(t) = 0 (3.3)

by Lemma 2.3. For T > T0, we see that

1

ν([−T, T ])

∫
[−T,T ]

[
sup

θ∈[t−r,t]

(
sup

τ∈[−r,0]
‖β(θ + τ)‖

)]
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−2r,t]
‖β(θ)‖

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−2r,t−r]
‖β(θ)‖

)
dµ(t)

+
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖β(θ)‖

)
dµ(t),

since β ∈ PAA0(R, X, µ, ν, r) and (3.3) holds, we have βt ∈ PAA0(R, C, µ, ν, r).
Therefore, ut ∈ PAA(R, C, µ, ν, r).
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Lemma 3.2. If (H1), (M1), (M2) hold and f ∈ PAA(R, X, µ, ν, r), then

(Λf)(t) :=

∫ t

−∞
Sα,β(t− s)f(s)ds ∈ PAA(R, X, µ, ν, r), t ∈ R.

Proof. It is clear that Λf ∈ BC(R, X) since

‖Λf‖ ≤ C|ω|−1/(α+1)π‖f‖
(α+ 1) sin(π/(α+ 1))

.

Let f(t) = f1(t) + f2(t), where f1 ∈ AA(R, X) and f2 ∈ PAA0(R, X, µ, ν, r),
then

(Λf)(t) =

∫ t

−∞
Sα,β(t− s)f(s)ds

=

∫ t

−∞
Sα,β(t− s)f1(s)ds+

∫ t

−∞
Sα,β(t− s)f2(s)ds

:= Λ1(t) + Λ2(t), t ∈ R.

Let (s′n)n∈N be any sequence of real numbers, then f1 ∈ AA(R, X) implies that
there exists a subsequence (sn)n∈N of (s′n)n∈N such that

lim
n→∞

f1(t+ sn) = g1(t), lim
n→∞

g1(t− sn) = f1(t), t ∈ R.

Define

G(t) =

∫ t

−∞
Sα,β(t− s)g1(s)ds,

and consider

Λ1(t+ sn) =

∫ t+sn

−∞
Sα,β(t+ sn − s)f1(s)ds =

∫ ∞
0

Sα,β(σ)f1(t+ sn − σ)dσ.

Note that

‖Λ1(t+ sn)‖ ≤ C|ω|−1/(α+1)π‖f1‖
(α+ 1) sin(π/(α+ 1))

, ‖G(t)‖ ≤ C|ω|−1/(α+1)π‖g1‖
(α+ 1) sin(π/(α+ 1))

,

and by the strong continuity of {Sα,β(t)}t≥0, for any fixed σ ∈ R and any t ≥ σ,
one has Sα,β(t−σ)f1(σ+sn)→ Sα,β(t−σ)g1(σ) as n→∞. Then by the Lebesgue
dominated convergence theorem, for any t ∈ R, Λ1(t+ sn)→ G(t) as n→∞, and
similarly, G(t− sn)→ Λ1(t) as n→∞. Therefore, Λ1 ∈ AA(R, X).

To complete the proof, we show that Λ2 ∈ PAA0(R, X, µ, ν, r). In fact, for
T > 0, one has

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖Λ2(θ)‖

)
dµ(t)

=
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]

∥∥∥∥∥
∫ θ

−∞
Sα,β(θ − s)f2(s)ds

∥∥∥∥∥
)
dµ(t)

=
1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]

∥∥∥∥∫ ∞
0

Sα,β(s)f2(θ − s)ds
∥∥∥∥
)
dµ(t)
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≤ 1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]

∫ ∞
0

‖Sα,β(s)‖ ‖f2(θ − s)‖ ds

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

(∫ ∞
0

C

1 + |ω|sα+1
sup

θ∈[t−r,t]
‖f2(θ − s)‖ ds

)
dµ(t)

≤ C
∫ ∞
0

1

1 + |ω|sα+1

(
1

ν([−T, T ])

∫
[−T,T ]

sup
θ∈[t−r,t]

‖f2(θ − s)‖dµ(t)

)
ds

= C

∫ ∞
0

ΦT (s)

1 + |ω|sα+1
ds,

where

ΦT (s) =
1

ν([−T, T ])

∫
[−T,T ]

sup
θ∈[t−r,t]

‖f2(θ − s)‖dµ(t).

Since (M2) holds, from Proposition 2.2, it follows that f2(·−s) ∈ PAA0(R, X, µ, ν, r)
for s ∈ R. Hence ΦT (s) → 0 as T → ∞. Note that ΦT is bounded by (M1)
and 1/(1 + |ω|sα+1) is integrable on [0,∞) by (2.3), from Lebesgue dominated
convergence theorem, it follows that

lim
T→∞

∫ ∞
0

ΦT (s)

1 + |ω|sα+1
ds = 0,

then

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖Λ2(θ)‖

)
dµ(t) = 0.

The proof is complete.

Theorem 3.1. Assume that (M1), (M2), (H1), (H21), (H31) hold, then (3.1) has a
unique mild solution u ∈ PAA(R, X, µ, ν, r) if CLf |ω|−1/(α+1)π < (α+1) sin(π/(α+
1)).

Proof. Define the operator F : PAA(R, X, µ, ν, r)→ PAA(R, X, µ, ν, r) by

(Fu)(t) =

∫ t

−∞
Sα,β(t− s)f(s, us)ds, t ∈ R. (3.4)

For u ∈ PAA(R, X, µ, ν, r), us ∈ PAA(R, C, µ, ν, r) by Lemma 3.1. Since f(t, 0) ∈
PAA(R, X, µ, ν, r) and PAA(R, X, µ, ν, r) ⊂ BC(R, X), then one has

‖f(t, ut)‖ ≤ Lf‖u‖+ ‖f(t, 0)‖ ≤ Lf‖u‖+ sup
t∈R
‖f(t, 0)‖

with sup
t∈R
‖f(t, 0)‖ < ∞. Therefore for all bounded subset B of C, f is bounded

on R × C. In view of Theorem 2.2, f(·, u·) ∈ PAA(R, X, µ, ν, r). Hence F is well
defined by Lemma 3.2.

For any u, v ∈ PAA(R, X, µ, ν, r),

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

−∞
‖Sα,β(t− s)‖‖f(s, us)− f(s, vs)‖ds

≤ Lf‖u− v‖
∫ t

−∞
‖Sα,β(t− s)‖ds
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≤ Lf‖u− v‖
∫ ∞
0

‖Sα,β(s)‖ds

≤ Lf‖u− v‖
(∫ ∞

0

C

1 + |ω|(sα+1 + γsβ)
ds

)
≤ CLf |ω|−1/(α+1)π

(α+ 1) sin(π/(α+ 1))
‖u− v‖,

hence by the Banach contraction mapping principle, F has a unique fixed point in
PAA(R, X, µ, ν, r), which is the unique (µ, ν)-pseudo almost automorphic of class
r mild solution to (3.1).

A different Lipschitz condition is considered in the following result.

Theorem 3.2. Assume that (M1), (M2), (H1), (H21), (H32), (I1), (I3), (I4) hold,
then (3.1) has a unique mild solution u ∈ PAA(R, X, µ, ν, r) provided that

sup
t∈R

∫ t

−∞

Lf (s)

1 + |ω|(t− s)α+1
ds <

1

C
.

Proof. Define the operator F : PAA(R, X, µ, ν, r)→ PAA(R, X, µ, ν, r) as (3.4).
It is not difficult to see that F is well defined by Lemma 3.1, Lemma 3.2 and
Theorem 2.2. For any u, v ∈ PAA(R, X, µ, ν, r),

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

−∞
‖Sα,β(t− s)‖‖f(s, us)− f(s, vs)‖ds

≤ ‖u− v‖
∫ t

−∞
Lf (s)‖Sα,β(t− s)‖ds

≤ ‖u− v‖
∫ t

−∞

CLf (s)

1 + |ω|((t− s)α+1 + γ(t− s)β)
ds

≤ C sup
t∈R

∫ t

−∞

Lf (s)

1 + |ω|(t− s)α+1
ds · ‖u− v‖,

hence by the Banach contraction mapping principle, F has a unique fixed point in
PAA(R, X, µ, ν, r), which is the unique (µ, ν)-pseudo almost automorphic of class
r mild solution to (3.1).

3.2. SpPAA perturbation

In this subsection, if f satisfies the Lipschitz condition, we investigate existence, u-
niqueness of PAA(R, X, µ, ν, r) mild solutions for (3.1) under SpPAA perturbation,
i.e., (H22) holds.

Lemma 3.3. Let {S(t)}t≥0 ⊂ L(X) be a strongly continuous family of bounded and
linear operators such that ‖S(t)‖ ≤ φ(t), t ∈ R+, where φ ∈ L1(R+) is nonincreas-
ing. If f ∈ SpPAA(R, X, µ, ν, r), then

(Πf)(t) :=

∫ t

−∞
S(t− s)f(s)ds ∈ PAA(R, X, µ, ν, r), t ∈ R.

Proof. Since f ∈ SpPAA(R, X, µ, ν, r), let f(s) = f1(s) + f2(s), where f b1 ∈
AA(R, Lp([0, 1], X) and f b2 ∈ PAA0(R, Lp([0, 1], X), µ, ν, r). Consider the integrals

vn(t) =

∫ t−n+1

t−n
S(t− s)f(s)ds
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=

∫ t−n+1

t−n
S(t− s)f1(s)ds+

∫ t−n+1

t−n
S(t− s)f2(s)ds, n = 1, 2, . . . ,

and set

Xn(t) =

∫ t−n+1

t−n
S(t− s)f1(s)ds, Yn(t) =

∫ t−n+1

t−n
S(t− s)f2(s)ds.

First, we show that Xn ∈ AA(R, X). For each n ∈ N, by the the uniform
boundedness principle or Banach-Steinhaus theorem, Ln := sup

n−1≤t≤n
‖S(t)‖ < +∞.

Fix n ∈ N and t ∈ R, one has

‖Xn(t+ h)−Xn(t)‖ ≤
∫ n

n−1
‖S(s)‖‖f1(t+ h− s)− f1(t− s)‖ds

≤ Ln
∫ t−n+1

t−n
‖f1(s+ h)− f1(s)‖ds

≤ Ln
(∫ t−n+1

t−n
‖f1(s+ h)− f1(s)‖pds

)1/p

.

Since f1 ∈ Lploc(R, X), we have

lim
h→0

∫ t−n+1

t−n
‖f1(s+ h)− f1(s)‖pds = 0,

then
lim
h→0
‖Xn(t+ h)−Xn(t)‖ = 0,

so Xn(t) is continuous.
Let (sm)m∈N be a sequence of real numbers. From f b1 ∈ AA(R, Lp([0, 1], X)), it

follows that there exist a subsequence (smk)k∈N and a function v ∈ Lploc(R, X) such
that for any t ∈ R(∫ t+1

t

‖f1(s+ smk)− v(s)‖p ds
)1/p

→ 0, k →∞.

Note that

Xn(t) =

∫ t−n+1

t−n
S(t− s)f1(s)ds =

∫ n

n−1
S(ξ)f1(t− ξ)dξ,

and define wn(t) =
∫ n
n−1 S(ξ)v(t− ξ)dξ, then by the Hölder inequality, we have

‖Xn(t+ smk)− wn(t)‖ =

∥∥∥∥∫ n

n−1
S(ξ) [f1(t+ smk − ξ)− v(t− ξ)] dξ

∥∥∥∥
≤ Ln

∫ n

n−1
‖f1(t+ smk − ξ)− v(t− ξ)‖ dξ

≤ Ln
(∫ t−n+1

t−n
‖f1(s+ smk)− v(s)‖p ds

)1/p

→ 0, k →∞.
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Similarly, ‖wn(t−smk)−Xn(t)‖ → 0, k →∞. Therefore, Xn ∈ AA(R, X) for n ∈ N.
By the Hölder inequality, one has

‖Xn(t)‖ ≤
∫ n

n−1
φ(s)‖f1(t− s)‖ds

≤ φ(n− 1)

∫ n

n−1
‖f1(t− s)‖ds

= φ(n− 1)

∫ t−n+1

t−n
‖f1(s)‖ds

≤ φ(n− 1)

(∫ t−n+1

t−n
‖f1(s)‖pds

)1/p

≤ φ(n− 1)‖f1‖Sp

and

∞∑
n=1

φ(n− 1)‖f1‖Sp ≤

(
φ(0) +

∞∑
n=2

∫ n−1

n−2
φ(t)dt

)
‖f1‖Sp

≤ (φ(0) + ‖φ‖L1) ‖f1‖Sp < +∞,

then
∞∑
n=1

Xn(t) is uniformly convergent on R.

Let X(t) =
∞∑
n=1

Xn(t), t ∈ R, then

X(t) =

∫ t

−∞
S(t− s)f1(s)ds t ∈ R,

by Lemma 2.1, we have X(t) =
∞∑
n=1

Xn(t) ∈ AA(R, X).

To complete the proof, we only need to prove that Yn ∈ PAA0(R, X, µ, ν, r).

By carrying out similar arguments as above, we know that
∞∑
n=1

Yn(t) is uniformly

convergent on R. Let Y (t) =
∞∑
n=1

Yn(t), then

Y (t) =

∫ t

−∞
S(t− s)f2(s)ds, t ∈ R.

It is obvious that Y ∈ BC(R, X). So, we only need to show that

lim
T→∞

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖Y (θ)‖

)
dµ(t) = 0.

In fact, by the Hölder inequality, one has

sup
θ∈[t−r,t]

‖Yn(θ)‖ ≤ sup
θ∈[t−r,t]

∫ n

n−1
‖S(ξ)‖‖f2(θ − ξ)‖dξ

≤ sup
θ∈[t−r,t]

∫ n

n−1
‖φ(ξ)‖‖f2(θ − ξ)‖dξ
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≤ φ(n− 1) · sup
θ∈[t−r,t]

∫ t−n+1

t−n
‖f2(s)‖ ds

≤ φ(0) · sup
θ∈[t−r,t]

(∫ t−n+1

t−n
‖f2(s)‖p ds

)1/p

,

then

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖Yn(θ)‖

)
dµ(t)

≤ φ(0)

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]

(∫ t−n+1

t−n
‖f2(s)‖pds

)1/p
)
dµ(t),

hence Yn ∈ PAA0(R, X, µ, ν, r) since f b2 ∈ PAA0(R, Lp([0, 1], X), µ, ν, r). From
Yn ∈ PAA0(R, X, µ, ν, r) and

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖Y (θ)‖

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]

∥∥∥∥∥Y (θ)−
N∑
n=1

Yn(θ)

∥∥∥∥∥
)
dµ(t)

+

N∑
n=1

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖Yn(θ)‖

)
dµ(t),

it follows that Y ∈ PAA0(R, X, µ, ν, r), whence Πf ∈ PAA(R, X, µ, ν, r).

Theorem 3.3. Assume that (M1), (M2), (H1), (H22), (H31), (H4) hold, then
(3.1) has a unique mild solution u ∈ PAA(R, X, µ, ν, r) if CLf |ω|−1/(α+1)π < (α+
1) sin(π/(α+ 1)).

Proof. Let u ∈ PAA(R, X, µ, ν, r), define the operator F : PAA(R, X, µ, ν, r) →
PAA(R, X, µ, ν, r) as (3.4). By Lemma 3.1, we have us ∈ PAA(R, C, µ, ν, r) ⊂
SpPAA(R, C, µ, ν, r). Let us = u1+u2, where u1 ∈ AA(R, C), u2 ∈ PAA0(R, C, µ, ν, r),
then K = {u1 : t ∈ R} is compact in C by Lemma 2.1. In view of Theorem 2.3,
f(·, u·) ∈ SpPAA(R, X, µ, ν, r), so F is well defined by Lemma 3.3.

For any u, v ∈ PAA(R, X, µ, ν, r),

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

−∞
‖Sα,β(t− s)‖‖f(s, us)− f(s, vs)‖ds

≤ Lf‖u− v‖
∫ ∞
0

‖Sα,β(s)‖ds

≤ CLf |ω|−1/(α+1)π

(α+ 1) sin(π/(α+ 1))
‖u− v‖,

hence by the Banach contraction mapping principle, F has a unique fixed point in
PAA(R, X, µ, ν, r), which is the unique (µ, ν)-pseudo almost automorphic of class
r mild solution to (3.1).
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Theorem 3.4. Assume that (M1), (M2), (H1), (H22), (H33), (J1), (J3) hold, if

C

(
1 +

|ω|−1/(α+1)π

(α+ 1) sin(π/(α+ 1))

)
‖Lf‖Sp < 1,

then (3.1) has a unique mild solution u ∈ PAA(R, X, µ, ν, r).

Proof. Define the operator F : PAA(R, X, µ, ν, r)→ PAA(R, X, µ, ν, r) as (3.4).
It is easy to see that F is well defined similar as the proof of Theorem 3.3.

For u, v ∈ PAA(R, X, µ, ν, r), one has

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

−∞
‖Sα,β(t− s)‖‖f(s, us)− f(s, vs)‖ds

≤ ‖u− v‖ ·
∫ t

−∞

CLf (s)

1 + |ω|[(t− s)α+1 + γ(t− s)β ]
ds

≤ ‖u− v‖ ·
∫ t

−∞

CLf (s)

1 + |ω|(t− s)α+1
ds

≤ C‖u− v‖ ·
∫ +∞

0

Lf (t− s)
1 + |ω|sα+1

ds

≤ C‖u− v‖ ·
∞∑
k=0

∫ k+1

k

Lf (t− s)
1 + |ω|sα+1

ds

≤ C‖u− v‖ ·
∞∑
k=0

1

1 + |ω|kα+1

∫ k+1

k

Lf (t− s)ds

≤ C‖u− v‖ ·
∞∑
k=0

1

1 + |ω|kα+1

(∫ t−k

t−k−1
‖Lf (s)‖pds

)1/p

≤ C‖Lf‖Sp‖u− v‖ ·
∞∑
k=0

1

1 + |ω|kα+1

≤ C‖Lf‖Sp‖u− v‖ ·
(

1 +

∫ ∞
0

1

1 + |ω|tα+1
dt

)
≤ C‖Lf‖Sp

(
1 +

|ω|−1/(α+1)π

(α+ 1) sin(π/(α+ 1))

)
· ‖u− v‖,

by the contraction mapping principle, F has a unique fixed point in PAA(R, X, µ, ν, r),
which is the unique (µ, ν)-pseudo almost automorphic of class r mild solution to
(3.1).

Theorem 3.5. Assume that (M1), (M2), (H1), (H22), (H34), (J1), (J3) hold, then
(3.1) has a unique mild solution u ∈ PAA(R, X, µ, ν, r).

Proof. Define the operator F as in (3.4). Let u, v ∈ PAA(R, X, µ, ν, r), one has

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

−∞
‖Sα,β(t− s)‖‖f(s, us)− f(s, vs)‖ds

≤ ‖u− v‖ ·
∫ t

−∞

CLf (s)

1 + |ω|[(t− s)α+1 + γ(t− s)β ]
ds
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≤ C
∫ t

−∞
Lf (s)ds · ‖u− v‖

≤ C‖Lf‖L1 · ‖u− v‖.

Similarly,

‖(F2u)(t)− (F2v)(t)‖ ≤
∫ t

−∞

CLf (s)

1 + |ω|[(t− s)α+1 + µ(t− s)β ]
‖(Fu)(s)− (Fv)(s)‖ds

≤ C
∫ t

−∞
Lf (s)‖(Fu)(s)− (Fv)(s)‖ds

≤ C2‖u− v‖
∫ t

−∞
Lf (s)

(∫ s

−∞
Lf (τ)dτ

)
ds

= C2‖u− v‖
∫ t

−∞

(∫ s

−∞
Lf (τ)dτ

)
d

(∫ s

−∞
Lf (τ)dτ

)
≤ C2

2!
‖u− v‖

(∫ t

−∞
Lf (τ)dτ

)2

≤ (C‖Lf‖L1)2

2!
‖u− v‖.

By the method of mathematical induction, we have

‖(Fnu)(t)− (Fnv)(t)‖ ≤ Cn

n!
‖u− v‖

(∫ t

−∞
Lf (τ)dτ

)n
.

Moreover, since Lf ∈ L1(R,R+),

‖(Fnu)(t)− (Fnv)(t)‖ ≤ (C‖Lf‖L1)n

n!
‖u− v‖,

which implies that

‖Fnu−Fnv‖ ≤ (C‖Lf‖L1)n

n!
‖u− v‖.

For sufficiently large n, we have (C‖Lf‖L1)n/n! < 1, by the Banach contraction
mapping principle, F has a unique fixed point in PAA(R, X, µ, ν, r), which is the
unique PAA(R, X, µ, ν, r) mild solution of (3.1).

3.3. Non-Lipschitz case

In this subsection, we study the existence of PAA(R, X, µ, ν, r) mild solution of (3.1)
when f is not satisfies Lipschitz condition. First, we recall a useful compactness
criterion and nonlinear Leray-Schauder alternative theorem.

Let h∗ : R→ R be a continuous nondecreasing function such that h∗(t) ≥ 1 for
all t ∈ R, and h∗(t)→∞ as |t| → ∞. Define

Ch∗(R, X) := {u ∈ C(R, X) : lim
|t|→∞

u(t)

h∗(t)
= 0}

endowed with the norm ‖u‖h∗ = sup
t∈R

(‖u(t)‖/h∗(t)).
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Lemma 3.4 ( [26]). A set K ⊆ Ch∗(R, X) is relatively compact in Ch∗(R, X) if it
verifies the following conditions:

(c1) The set K(t) := {u(t) : u ∈ K} is relatively compact in X for each t ∈ R.

(c2) The set K is equicontinuous.

(c3) For each ε > 0, there exists ϑ > 0 such that ‖u(t)‖ ≤ εh∗(t) for all u ∈ K
and all |t| > ϑ.

Theorem 3.6 ( [24] Leray-Schauder Alternative Theorem). Let Ω be a closed con-
vex subset of a Banach space X such that 0 ∈ Ω. Let F : Ω → Ω be a completely
continuous map. Then the set {x ∈ Ω : x = λF(x), 0 < λ < 1} is unbounded or
the map F has a fixed point in Ω.

Now, we are in a position to establish the following result of the existence
of PAA(R, X, µ, ν, r) mild solutions. The result is based upon nonlinear Leray-
Schauder alternative theorem and the proof is similar as [4], one can see [4] for
more details.

Theorem 3.7. Assume (M1), (M2), (H1), (H22), (N1)-(N3) hold and satisfies the
following conditions:

(K1) There exists a continuous nondecreasing function W : [0,+∞) → [0,+∞)
such that ‖f(t, ut)‖ ≤W (‖u‖) for all t ∈ R, u ∈ X.

(K2) For each $ ≥ 0, lim
|t|→∞

1

h∗(t)

∫ t

−∞

W ($h∗(s))

1 + |ω|((t− s)α+1 + γ(t− s)β)
ds = 0.

(K3) For each ε > 0, there exists δ > 0 such that for u, v ∈ Ch∗(R, X), ‖u−v‖h∗ ≤ δ
implies that∫ t

−∞

‖f(s, us)− ‖f(s, vs)‖
1 + |ω|((t− s)α+1 + γ(t− s)β)

ds ≤ ε, for all t ∈ R.

(K4) For all a, b ∈ R, a ≤ b and λ ≥ 0, the set {f(s, us) : a ≤ s ≤ b, u ∈
Ch∗(R, X), ‖u‖h∗ ≤ λ} is relatively compact in X.

(K5) lim inf
ξ→∞

ξ

Φ(ξ)
> 1, where

Φ(z) := C

∥∥∥∥∫ t

−∞

W (zh∗(s))

1 + |ω|((t− s)α+1 + γ(t− s)β)
ds

∥∥∥∥
h∗
, for z ≥ 0,

C is a constant given in (2.2).

Then (3.1) has a mild solution u ∈ PAA(R, X, µ, ν, r).

Proof. Define Γ : Ch∗(R, X)→ C(R, X) by

(Γu)(t) =

∫ t

−∞
Sα,β(t− s)f(s, us)ds, t ∈ R.

Next, we prove that Γ has a fixed point in PAA(R, X, µ, ν, r) and divide the proof
in several steps.
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(i) For u ∈ Ch∗(R, X), by (K1), one has

‖Γu(t)‖
h∗(t)

≤
∫ t

−∞
‖Sα,β(t− s)‖‖f(s, us)‖ds

≤
∫ t

−∞

C‖f(s, us)‖
1 + |ω|((t− s)α+1 + γ(t− s)β)

ds

≤
∫ t

−∞

CW (‖u(s)‖)
1 + |ω|((t− s)α+1 + γ(t− s)β)

ds

≤
∫ t

−∞

CW (‖u‖h∗h∗(s))
1 + |ω|((t− s)α+1 + γ(t− s)β)

ds.

It follows from (K2) that Γ : Ch∗(R, X)→ Ch∗(R, X).
(ii) Γ is continuous. In fact, for each ε > 0, by (K3), there exits δ > 0, for

u, v ∈ Ch∗(R, X) and ‖u− v‖h∗ ≤ δ, one has

‖Γu− Γv‖ ≤
∫ t

−∞
‖Sα(t− s)‖‖f(s, us)− f(s, vs)‖ds

≤
∫ t

−∞

C‖f(s, us)− ‖f(s, vs)‖
1 + |ω|((t− s)α+1 + γ(t− s)β)

ds

≤ Cε, for all t ∈ R,

take into account that h∗(t) ≥ 1,

‖Γu− Γv‖
h∗(t)

≤ Cε,

which implies that ‖Γu− Γv‖h∗ ≤ Cε, so Γ is continuous.
(iii) Γ is completely continuous. Set Br(Z) for the closed ball with center at

0 and radius r > 0 in the space Z. Let V = Γ(B$(Ch∗(R, X))) and v = Γ(u) for
u ∈ B$(Ch∗(R, X)).

Initially, we prove that V is a relatively compact subset of X for each t ∈ R. Let
ε > 0, since h∗(t)→∞ as |t| → ∞, it follow (K2) that there exists a ≥ 0 such that

C

∫ ∞
a

W ($h∗(t− s))
1 + |ω|(sα+1 + γsβ)

ds ≤ ε.

Since

v(t) =

∫ t

−∞
Sα,β(t− s)f(s, us)ds

=

∫ ∞
0

Sα,β(s)f(t− s, ut−s)ds

=

∫ a

0

Sα,β(s)f(t− s, ut−s)ds+

∫ ∞
a

Sα,β(s)f(t− s, ut−s)ds,

and ∥∥∥∥∫ ∞
a

Sα,β(s)f(t− s, ut−s)ds
∥∥∥∥ ≤ C ∫ ∞

a

W ($h∗(t− s))
1 + |ω|(sα+1 + γsβ)

ds ≤ ε,
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hence v(t) ∈ ac0(N) + Bε(X), where c0(N) denotes the convex hull of N and
N = {Sα,β(s)f(ξ, uξ) : 0 ≤ s ≤ a, t − a ≤ ξ ≤ t, ‖u‖h∗ ≤ λ}. Using the fact that
Sα,β(·) is strong continuous and (K4), we infer that N is a relatively compact set,

and V (t) ⊂ ac0(N) +Bε(X) is also a relatively compact set.
Next, we show that V is equicontinuous. In fact, for each ε > 0, we can choose

a > 0, δ1 > 0 such that∥∥∥∥∫ τ

0

Sα,β(σ)f(t+ τ − σ, ut+τ−σ)dσ +

∫ ∞
a

[Sα,β(σ + τ)− Sα,β(σ)]f(t− σ, ut−σ)dσ

∥∥∥∥
≤ C

(∫ τ

0

W ($h∗(t+ τ − σ))

1 + |ω|(σα+1 + γσβ)
dσ +

∫ ∞
a

W ($h∗(t− σ))

1 + |ω|((σ + τ)α+1 + γ(σ + τ)β)
dσ

+

∫ ∞
a

W ($h∗(t− σ))

1 + |ω|(σα+1 + γσβ)
dσ

)
≤ ε

2
, for τ ≤ δ1.

Moreover, since {f(t − σ, ut−σ) : 0 < σ < a, u ∈ B$(Ch∗(R, X))} is a relatively
compact set and Sα,β is strong continuous, we can choose δ2 > 0 such that

‖[Sα,β(σ + τ)− Sα,β(σ)]f(t− σ, ut−σ)‖ ≤ ε

2a
, for τ ≤ δ2.

Note that

v(t+ τ)− v(t) =

∫ t+τ

−∞
Sα,β(t+ τ − s)f(s, us)ds−

∫ t

−∞
Sα,β(t− s)f(s, us)ds

=

∫ t

−∞
Sα,β(t+ τ − s)f(s, us)ds+

∫ t+τ

t

Sα,β(t+ τ − s)f(s, us)ds

−
∫ t

−∞
Sα,β(t− s)f(s, us)ds

=

∫ t

−∞
[Sα,β(t+ τ − s)− Sα,β(t− s)]f(s, us)ds

+

∫ t+τ

t

Sα,β(t+ τ − s)f(s, us)ds

=

∫ ∞
0

[Sα,β(σ + τ)− Sα,β(σ)]f(t− σ, ut−σ)dσ

+

∫ τ

0

Sα,β(σ)f(t+ τ − σ, ut+τ−σ)dσ

=

∫ a

0

[Sα,β(σ + τ)− Sα,β(σ)]f(t− σ, ut−σ)dσ

+

∫ ∞
a

[Sα,β(σ + τ)− Sα,β(σ)]f(t− σ, ut−σ)dσ

+

∫ τ

0

Sα,β(σ)f(t+ τ − σ, ut+τ−σ)dσ,

then we have ‖v(t + τ) − v(t)‖ ≤ ε for τ small enough and independent of u ∈
B$(Ch∗(R, X)).
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Finally, by (K2), one has

‖v(t)‖
h∗(t)

≤
∫ t

−∞

CW (‖u‖h∗h∗(s))
1 + |ω|((t− s)α+1 + γ(t− s)β)

ds→ 0 for |t| → ∞,

and this convergence is independent of u ∈ B$(Ch∗(R, X)). Hence, V is relatively
compact set in Ch∗(R, X) by Lemma 3.4.

(iv) If uλ is a solution of the equation uλ = λΓ(uλ) for some 0 < λ < 1, then

‖uλ‖ = λ

∥∥∥∥∫ t

−∞
Sα,β(t− s)f(s, uλs )ds

∥∥∥∥
≤
∫ t

−∞

CW (‖uλ‖h∗h∗(s))
1 + |ω|((t− s)α+1 + γ(t− s)β)

ds

≤ Φ(‖uλ‖h∗)h∗(t).

Hence, one has
‖uλ‖h∗

Φ(‖uλ‖h∗)
≤ 1

and by (K5), we conclude that the set {uλ : uλ = λΓ(uλ), λ ∈ (0, 1)} is bounded.
(v) It is easy to see that there exists r0 > 0 such that Γ(Br0(Ch∗(R, X))) ⊂

Br0(Ch∗(R, X)). It follows from Lemma 3.1, Lemma 3.3 and Theorem 2.4 that

Γ(PAA(R, X, µ, ν, r)) ⊆ PAA(R, X, µ, ν, r),

consequently, we consider

Γ :Br0(Ch∗(R, X)) ∩ PAA(R, X, µ, ν, r)
Ch∗ (R,X)

→ Br0(Ch∗(R, X)) ∩ PAA(R, X, µ, ν, r)
Ch∗ (R,X)

where B
Ch∗ (R,X)

denotes the closure of a set B in the space Ch∗(R, X). Using (i)-
(iii), we have that the map is completely continuous. By (iv) and Theorem 3.6, we

deduce that Γ has a fixed point u ∈ Br0(Ch∗(R, X)) ∩ PAA(R, X, µ, ν, r)
Ch∗ (R,X)

.
Let un be a sequence in Br0(Ch∗(R, X)) ∩ PAA(R, X, µ, ν, r) such that it con-

verges to u in the norm Ch∗(R, X). For ε > 0, let δ > 0 be the constant in (K3),
there exists n0 ∈ N such that ‖un − u‖h∗ ≤ δ for all n ≥ n0. For n ≥ n0,

‖Γun − Γu‖ ≤
∫ t

−∞
‖Sα,β(t− s)‖‖f(s, uns )− f(s, us)‖ds

≤ C
∫ t

−∞

‖f(s, uns )− f(s, us)‖
1 + |ω|((t− s)α+1 + γ(t− s)β)

ds ≤ Cε.

Hence, Γun converges to Γu = u uniformly in R. That is u ∈ PAA(R, X, µ, ν, r)
and completes the proof.

Corollary 3.1. Assume (M1), (M2), (H1), (H22), (N1)-(N3) hold and satisfies the
following conditions:

(a1) f(t, 0) = q(t).
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(a2) f satisfies the Hölder type condition:

‖f(t, φ)− f(t, ψ)‖ ≤ C1‖φ− ψ‖θC , φ, ψ ∈ C, t ∈ R,

where 0 < θ < 1, C1 > 0 is a constant.

(a3) For all a, b ∈ R, a ≤ b and λ ≥ 0, the set {f(s, us) : a ≤ s ≤ b, u ∈
Ch∗(R, X), ‖u‖h∗ ≤ λ} is relatively compact in X.

Then (3.1) has a mild solution u ∈ PAA(R, X, µ, ν, r).

Proof. By (a2), it is easy to see that (N1) hold. Let C0 = ‖q‖ and W (ξ) = C0 +

C1ξ
θ, then (K1) is satisfied. Take a function h∗ such that sup

t∈R

∫ t
−∞

h∗(s)θ

1+|ω|(t−s)α+1 ds :=

C2 <∞, it is not difficult to see that (K2) is satisfied. To verify (K3), note that for

each ε > 0, there exists 0 < δ <
(

ε
C1C2

)1/θ
, such that for every u, v ∈ Ch∗(R, X),

‖u− v‖h∗ ≤ δ implies that∫ t

−∞

‖f(s, us)− f(s, vs)‖
1 + |ω|((t− s)α+1 + (t− s)β)

ds ≤
∫ t

−∞

C1h
∗(s)θ‖u− v‖θh∗

1 + |ω|((t− s)α+1 + (t− s)β)
ds

≤
∫ t

−∞

C1h
∗(s)θ‖u− v‖θh∗

1 + |ω|(t− s)α+1
ds

≤ C1C2δ
θ ≤ ε, for all t ∈ R.

On the other hand, (K5) can be easily verified using the definition of W . By
Theorem 3.7, (3.1) has a mild solution u ∈ PAA(R, X, µ, ν, r).

4. FFDEs with infinite delay

In this section, we establish some sufficient criteria for the existence, uniqueness of
PAA(R, X, µ, ν,∞) solutions for (3.1) with infinite delay.

In this work, we will employ an axiomatic definition of the phase space B which
is similar to the one introduced in [25]. More precisely, B is a vector space of
functions mapping (−∞, 0] into X endowed with seminorm ‖ · ‖B such that the
next axioms hold:

(A) If x : (−∞, σ+ a)→ X, a > 0, σ ∈ R is continuous on [σ, σ+ a) and xσ ∈ B,
then for every t ∈ [σ, σ + a), the following hold:

(i) xt ∈ B;

(ii) ‖x(t)‖ ≤ H‖xt‖B;

(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,
where H > 0 is a constant; K,M : [0,∞)→ [1,∞), K is continuous, M
is locally bounded and H,K,M are independent of x(·).

(A1) For the function x(·) in (A), the function t→ xt is continuous from [σ, σ+ a)
into B.

(B) The space B is complete.

(C) If (ϕn)n∈N is a bounded sequence in C((−∞, 0], X) given by functions with
compact support and ϕn → ϕ in the compact-open topology, then ϕ ∈ B and
‖ϕn − ϕ‖B → 0 as n→∞.
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Definition 4.1 ( [21]). Let B0 = {ϕ ∈ B : ϕ(0) = 0} and S(t) : B → B be the
C0-semigroup defined by S(t)ϕ(θ) = ϕ(0) on [−t, 0] and S(t)ϕ(θ) = ϕ(t + θ) on
(−∞,−t]. The phase space B is called a fading memory space if ‖S(t)ϕ‖B → 0
as t → ∞ for every ϕ ∈ B0. We said that B is a uniform fading memory space if
‖S(t)‖L(B0) → 0 as t→∞.

Remark 4.1 ( [21]). Assume that ς > 0 such that ‖ϕ‖B ≤ ς supθ≤0 ‖ϕ(θ)‖ for
each ϕ ∈ B ∩BC((−∞, 0], X), see [25] for more details. Moreover, if B is a fading
memory, we assume that max{K(t),M(t)} ≤ R for all t ≥ 0, see [25].

Lemma 4.1 ( [25]). The space B is a uniform fading memory space if and only if
axiom (C) holds, the function K is bounded and lim

t→∞
M(t) = 0.

Lemma 4.2. If (M1) holds, u ∈ PAA(R, X, µ, ν,∞) and B is a uniform fading
memory space, then ut ∈ PAA(R,B, µ, ν,∞).

Proof. Let u = g + h, where h ∈ AA(R, X), h ∈ PAA0(R, X, µ, ν,∞), then ut =
gt + ht and clearly gt ∈ AA(R,B). Next, we show that ht ∈ PAA0(R,B, µ, ν,∞).
Let r > 0, ε > 0, since B is a uniform fading memory space, by Lemma 4.1, there
exists τε > r such that M(τ) < ε for every τ > τε. Hence, for r > 0 and τ > τε,
one has

1

ν([−T, T ])

∫
[−T,T ]

(
sup

θ∈[t−r,t]
‖hθ‖B

)
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

[
sup

θ∈[t−r,t]
M(θ − σ)‖hσ‖B+ sup

θ∈[t−r,t]
K(θ−σ) sup

s∈[σ,θ]
‖h(s)‖

]
dµ(t)

≤ 1

ν([−T, T ])

∫
[−T,T ]

[
sup

θ∈[t−r,t]
M(τ)‖hθ−τ‖B + sup

θ∈[t−r,t]
K(τ) sup

s∈[θ−τ,θ]
‖h(s)‖

]
dµ(t)

≤ µ([−T, T ])

ν([−T, T ])
ς‖h‖ε+

R
ν([−T, T ])

∫
[−T,T ]

(
sup

s∈[t−τ−r,t]
‖h(s)‖

)
dµ(t),

which complete the proof since ε is arbitrary and h ∈ PAA0(R, X, µ, ν,∞) ⊂
PAA0(R, X, µ, ν, r + τ).

Similar as the proof of Lemma 3.2 and Lemma 3.3, one has

Lemma 4.3. If (M1), (M2) hold and f ∈ PAA(R, X, µ, ν,∞), then

(Λf)(t) =

∫ t

−∞
Sα,β(t− s)f(s)ds ∈ PAA(R, X, µ, ν,∞), t ∈ R.

Lemma 4.4. Let {S(t)}t≥0 ⊂ L(X) be a strongly continuous family of bounded and
linear operators such that ‖S(t)‖ ≤ φ(t), t ∈ R+, where φ ∈ L1(R+) is nonincreas-
ing. If f ∈ SpPAA(R, X, µ, ν,∞), then

(Πf)(t) =

∫ t

−∞
S(t− s)f(s)ds ∈ PAA(R, X, µ, ν,∞), t ∈ R.

Similar as the proof of Theorems 3.1-3.7 in Section 3, by Lemma 4.2, Lemma
4.3 and Lemma 4.4, one has the following results.

• PAA perturbation
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Theorem 4.1. Assume that (M1), (M2), (H1), (H23), (H31) hold, where B instead
of C in (H31), then (3.1) has a unique mild solution u ∈ PAA(R, X, µ, ν,∞), if

ςCLf |ω|−1/(α+1)π < (α+ 1) sin(π/(α+ 1)),

where ς is defined as in Remark 4.1.

Proof. Define the operator F : PAA(R, X, µ, ν,∞) → PAA(R, X, µ, ν,∞) as in
(3.4). By Lemma 4.2 and Theorem 2.5, one has f(t, ut) ∈ PAA(R, X, µ, ν,∞),
hence F is well defined by Lemma 4.3. For any u, v ∈ PAA(R, X, µ, ν,∞), one has

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

−∞
‖Sα,β(t− s)‖‖f(s, us)− f(s, vs)‖ds

≤ Lf
∫ t

−∞
‖Sα,β(t− s)‖‖us − vs‖Bds

≤ ςLf‖u− v‖
(∫ ∞

0

C

1 + |ω|(sα+1 + γsβ)
ds

)
≤ ςCLf |ω|−1/(α+1)π

(α+ 1) sin(π/(α+ 1))
‖u− v‖,

hence by the Banach contraction mapping principle, F has a unique fixed point in
PAA(R, X, µ, ν,∞).

Theorem 4.2. Assume that (M1), (M2), (H1), (H23), (H32), (I1), (I3), (I4)
hold, where B instead of C in (H32), then (3.1) has a unique mild solution u ∈
PAA(R, X, µ, ν,∞) provided that

sup
t∈R

∫ t

−∞

Lf (s)

1 + |ω|(t− s)α+1
ds <

1

ςC
.

• SpPAA perturbation

Theorem 4.3. Assume that (M1), (M2), (H1), (H24), (H31), (H4) hold, where B
instead of C in (H31), if ςCLf |ω|−1/(α+1)π < (α+ 1) sin(π/(α+ 1)), then (3.1) has
a unique mild solution u ∈ PAA(R, X, µ, ν,∞).

Theorem 4.4. Assume that (M1), (M2), (H1), (H24), (H33), (J1), (J3) hold,
where B instead of C in (H33), if

ςC

(
1 +

|ω|−1/(α+1)π

(α+ 1) sin(π/(α+ 1))

)
‖Lf‖Sp < 1,

then (3.1) has a unique mild solution u ∈ PAA(R, X, µ, ν,∞).

Theorem 4.5. Assume that the conditions (M1), (M2), (H1), (H24), (H34), (J1),
(J3) hold, where B instead of C in (H34), then (3.1) has a unique mild solution
u ∈ PAA(R, X, µ, ν,∞).

• Non-Lipschitz case

Theorem 4.6. Assume (M1), (M2), (H1), (H24), (N1)-(N3), (K1)-(K5) hold, then
(3.1) has a mild solution u ∈ PAA(R, X, µ, ν,∞).
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5. Example

Consider the following fractional partial differential equation with delay

Dα+1
t u(t, x)+γDβ

t u(t, x)=
∂2

∂x2
u(t, x)−δu(t, x)+Dα

t

[
a(t)

∫ 0

−1
b(s) sin[u(t+s, x)]ds

]
,

(5.1)
with initial and zero boundary conditions: u(0, t) = u(1, t) = 0, where t ∈ R, x ∈
[0, 1], 0 < α ≤ β ≤ 1, γ > 0, δ > 0.

Let X = (L2([0, 1],R), ‖ · ‖L2) and define the operator A on X by

Au =
∂2

∂x2
u− δu

with
D(A) = {u ∈ L2([0, 1],R) : u′′ ∈ L2[0, 1], u(0) = u(1) = 0},

and

f(t, φ)(x) = a(t)

∫ 0

−1
b(s) sin[φ(s)(x)]ds, t ∈ R, φ ∈ C1 := C([−1, 0], X), x ∈ [0, 1].

It is well know that A is a ω-sectorial operator with ω = −δ < 0 and angle π/2
(and hence of angle βπ/2 with β ≤ 1) [27]. Let u(t) = u(t, ·), then (5.1) can be
rewritten as an abstract system of the form (3.1).

(i) Let

f(t, φ)(x) = a(t)

∫ 0

−1
b(s) sin[φ(s)(x)]ds, t ∈ R, φ ∈ C1, x ∈ [0, 1],

where a(t) ∈ PAA(R,R, µ, ν, 1), µ = ν and suppose that its Radon-Nikodym deriva-
tive is given

ρ(t) =

 et, if t ≤ 0,

1, if t > 0,

then µ, ν ∈M and satisfy (M1), (M2) [6]. In addition, since

‖f(t, φ)− f(t, ψ)‖ ≤ |a|
(∫ 0

−1
|b(s)|2ds

)1/2

‖φ− ψ‖C1 , for all φ, ψ ∈ C1,

so (H31) holds with Lf ≡ |a|
(∫ 0

−1
|b(s)|2ds

)1/2

. By Theorem 3.1, we conclude

that (5.1) has a unique solution u ∈ PAA(R,R, µ, ν, 1) if CLfδ
−1/(α+1)π < (α +

1) sin(π/(α+ 1)).

(ii) Let

f(t, φ)(s) = m(t) sin (φ(s)) +m(t)e−t cos (φ(s)), φ ∈ C1,

where

m(t) =

 sin

(
1

cosn+ cosπn+ 2

)
, t ∈ (n− ε, n+ ε), n ∈ Z,

0, otherwise,
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for some ε ∈ (0, a) and

a=min{1/2, (α+ 1) sin(π/(α+ 1))/[4C((α+ 1) sin(π/(α+ 1))+|δ|−1/απ)]}.

By [30], m(t) ∈ S2AA(R,R), then m(t) sinφ ∈ S2AA(R × C1,R), whence f ∈
S2PAA(R× C1,R, µ, ν, 1), where µ = ν and its Radon-Nikodym derivative is given
by ρ(t) = et. In addition, for each t ∈ R and φ, ψ ∈ C1, one has

‖m(t) sinφ−m(t) sinψ‖L2 =

(∫ 1

0

|m(t) sin(φ(s))−m(t) sin(ψ(s))|2ds
)1/2

≤ |m(t)|‖φ− ψ‖L2 ,

and

‖f(t, φ)− f(t, ψ)‖L2 ≤
(∫ 1

0

|m(t) sin(φ(s))−m(t) sin(ψ(s))|2ds
)1/2

+

(∫ 1

0

|m(t)e−t cos(φ(s))−m(t)e−t cos(ψ(s))|2ds
)1/2

≤ 2|m(t)|‖φ− ψ‖L2 .

Since

‖|m(·)|‖S1 = sup
t∈R

∫ t+1

t

|m(s)|ds ≤ 2ε,

then

C

(
1 +

δ−1/(α+1)π

(α+ 1) sin(π/(α+ 1))

)
‖Lf‖S1

= C

(
1 +

δ−1/(α+1)π

(α+ 1) sin(π/(α+ 1))

)
· 2‖m(·)‖S1

≤ 4Cε

(
1 +

δ−1/(α+1)π

(α+ 1) sin(π/(α+ 1))

)
< 1.

By Theorem 3.4, there exists a unique PAA(R, X, µ, ν, 1) mild solution to (5.1).
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