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Abstract This paper studies some important properties of the notion gener-
alized exponential dichotomy. A new notion called generalized bounded growth
is introduced to describe the characterization of generalized exponential di-
chotomy. The relations between generalized bounded growth and generalized
exponential dichotomy are established.
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1. Introduction and Motivation

1.1. History

Consider the following linear system

x′ = A(t)x, (1.1)

where x ∈ Rn, A(t) is a n×n continuous matrix defined on R. Let X(t) be a
fundamental matrix of (1.1).

Definition 1.1. System (1.1) is said to possess an exponential dichotomy on R
(Coppel [4]), if there exists a projection P and strictly positive constants K,α such
that {

∥X(t)PX−1(s)∥ ≤ K exp{−α(t− s)}, for t ≥ s, t, s ∈ R,
∥X(t)(I − P )X−1(s)∥ ≤ K exp{α(t− s)}, for t ≤ s, s, t ∈ R,

(1.2)

hold.

The properties and applications of exponential dichotomy have been well stud-
ied. For examples, one can refer to [4–28]. However, Lin [13] argued that the notion
of exponential dichotomy considerably restricts the dynamics. It is thus important
to look for more general types of hyperbolic behavior. He proposed the notion of
generalized exponential dichotomy which is more general than the classical notion
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of exponential dichotomy. Jiang [7–10] also thought that the notion of generalized
exponential dichotomy was very important and he had applied it to improve the
Palmer linearization theorem.

Definition 1.2. System (1.1) is said to possess a generalized exponential dichotomy
on R (shortly for GED), if there exists a projection P and a strictly positive constant
K such that

∥X(t)PX−1(s)∥ ≤ K exp{−
∫ t

s

α(τ)dτ}, for t ≥ s, s, t ∈ R,

∥X(t)(I − P )X−1(s)∥ ≤ K exp{
∫ t

s

α(τ)dτ}, for t ≤ s, s, t ∈ R,
(1.3)

hold, where α(t) is a nonnegative continuous function, satisfying

lim
t→+∞

∫ t

0

α(ξ)dξ = +∞, lim
t→−∞

∫ 0

t

α(ξ)dξ = +∞ (see Lin [14]).

Remark 1.1. When α(ξ) = α, Definition 1.2 reduces to Definition 1.1.

Example 1.1. Consider the system(
x′
1

x′
2

)
=

 − 1√
|t|+1

0

0 1√
|t|+1

(
x1

x2

)
. (1.4)

Then system (1.4) has a GED, but the classical exponential dichotomy can not be
satisfied.

1.2. Motivation and comparison with previous works

Lin [13] has obtained a characterization of exponential dichotomy in terms of Lya-
punov function. Different from his consideration, some new criteria are established
for the existence of GED based on proposing a new notion of generalized bounded
growth. Moreover, motivated by the work [4, 12, 23], we obtain a set of new prop-
erties of GED by discussing the relations between the n independent solutions and
GED. Our results generalize some previously known results in [4, 12, 23]. Recently,
another kind of generalization of the dichotomy is so-called the nonuniform hy-
perbolicity (e.g see Chu [1–3]). Zhang [29] also proposed a generalized notion of
exponential dichotomy in Banach space in order to find finer invariant manifolds
based on nonhyperbolic or pseudohyperbolic systems. It should be noted that our
notion of generalized exponential dichotomy is not a kind of nonuniform hyperbol-
icity. Our notion still belongs to a kind of uniform hyperbolicity. It is more general
than the classical notion of exponential dichotomy. So our consideration is different
from those in [1–3,29].

1.3. Outline of the paper

In next section, some definitions and lemmas are introduced. In Section 3, some
criteria for the existence of the generalized exponential dichotomy are established.
In Section 4, some properties on characterization of the generalized exponential
dichotomy are presented.
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2. Some definitions and lemmas

In this section, we recall some known results which will play role in our proofs.
Consider the following two linear systems

x′ = A(t)x, (2.1)

and

y′ = B(t)y, (2.2)

where x, y∈Rn, A(t), B(t) are continuous and bounded matrix functions on R.

Definition 2.1. Suppose that S(t) is a non-degenerate square matrix defined on
R or R+, S(t) is said to be a Lyapunov square matrix, if S(t) is differentiable and
∥S(t)∥, ∥S−1(t)∥ are bounded.

Definition 2.2. System (2.1) is kinematically similar to system (2.2), if there exists
a Lyapunov square matrix S(t) such that

S′(t) = A(t)S(t)− S(t)B(t) or B(t) = S−1(t)A(t)S(t)− S−1(t)S′(t),

hold.

Definition 2.3. System (2.1) is said to be a diagonal block, if system (2.1) is
kinematically similar to system (2.2). Moreover, B(t) has a diagonal block of the

form

(
B1(t)

B2(t)

)
, where the ranks of B1(t), B2(t) are lower than B(t) (see [4,

Chap.5]).

Definition 2.4. Linear system (2.1) is said to be of bounded growth (see [4,
Chap.5]), if there exist constants C ≥ 1, h > 0, such that any solution of system
(2.1) x(t) satisfies

∥x(t)∥ ≤ C∥x(s)∥, (s ≤ t ≤ s+ h).

Lemma 2.1. System (2.1) is kinematically similar to system (2.2), if and only if
there exists a Lyapunov transformation y = S(t)x which can send system (2.1) into
system (2.2).

Lemma 2.2. Let X(t) be an invertible matrix and P be an orthogonal projection,
then there exists a continuous and differentiable non-degenerate square matrix S(t),
such that {

S(t)PS−1(t) = X(t)PX−1(t),

S(t)(I − P )S−1(t) = X(t)(I − P )X−1(t),

and

∥S(t)∥ ≤
√
2, (2.3)

∥S−1(t)∥ ≤ [∥X(t)PX−1(t)∥2 + ∥X(t)(I − P )X−1(t)∥2] 12 (2.4)

hold, where S(t) = X(t)R−1(t), R(t) is an uniqueness positive square root of G(t),
G(t) = PXT (t)X(t)P + (I − P )XT (t)X(t)(I − P ), XT (t) denotes the transpose of
X(t) (see [4, Chap.5]).
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Remark 2.1. It should be noted that Lin [14] has given an equivalent definition
of GED as follows.

∥X(t)Pξ∥ ≤ K exp{−
∫ t

s

α(τ)dτ}∥X(s)Pξ∥ for s ≤ t, s, t ∈ R,

∥X(t)(I − P )ξ∥ ≤ K exp{
∫ t

s

α(τ)dτ}∥X(s)(I − P )ξ∥ for t ≤ s, s, t ∈ R.

(2.5)
Moreover, for arbitrary t ∈ R, he proved that

∥X(t)PX−1(t)∥ ≤ M, (2.6)

and

∥X(t)(I − P )X−1(t)∥ ≤ M, (2.7)

where M is a positive constant.

3. Criteria for the existence of GED

To continue our work, we should introduce a new definition here.

Definition 3.1. Linear system (2.1) is said to be of generalized bounded growth, if
for some fixed h > 0, there exists a nonnegative continuous function ϱ(t), such that
any solution of system (2.1) x(t) satisfies

∥x(t)∥ ≤ c(s)∥x(s)∥, s ≤ t ≤ s+ h, (3.1)

where c(s) = µ exp{
∫ s+h

s
ϱ(τ)dτ}.

It is easy to see that µ ≥ 1 and c(s) is non-increasing for s. Next theorem gives
an equivalent definition of generalized bounded growth.

Theorem 3.1. Linear system (2.1) is of generalized bounded growth, if and only if
there exists a nonnegative nonincreasing continuous function ϖ(t) and a constant
µ ≥ 1, such that

∥X(t)X−1(s)∥ ≤ µ exp{
∫ t

s

ϖ(τ)dτ}, t ≥ s.

Proof. First, we show the necessity. Since linear system (2.1) is of generalized
bounded growth, there exists a nonnegative continuous function ϱ(t), such that for
arbitrary ξ∈Rn, we have

∥X(t)ξ∥ ≤ c(s)∥X(s)ξ∥, s ≤ t ≤ s+ h,

where c(s) and µ have been defined in Definition 3.1. Taking s, t∈R, s ≤ t, if
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s+ kh ≤ t < s+ (k + 1)h, then

∥X(t)ξ∥ ≤ c(t− h)∥X(t− h)ξ∥
≤ c(t− h)c(t− 2h)∥X(t− 2h)ξ∥
≤ ... ≤ c(t− h)c(t− 2h)...c(t− kh)c(s)∥X(s)ξ∥
≤ ... ≤ ck+1(t− h)∥X(s)ξ∥

= µk+1 exp{(k + 1)

∫ t

t−h

ϱ(τ)dτ}∥X(s)ξ∥

≤ µk+1 exp{(k + 1)

∫ t

t−kh

ϱ(τ)dτ}∥X(s)ξ∥

≤ µk+1 exp{(k + 1)

∫ t

s

ϱ(τ)dτ}∥X(s)ξ∥.

Then we can choose a nonnegative continuous function ϖ(t) such that

(k + 1)

∫ t

s

ϱ(τ)dτ ≤
∫ t

s

ϖ(τ)dτ.

Let µ1 = µk+1, that is

∥X(t)ξ∥ ≤ µ1 exp{
∫ t

s

ϖ(τ)dτ}∥X(s)ξ∥.

Set ξ = X−1(s)y, for t ≥ s, we have

∥X(t)X−1(s)y∥ ≤ µ1∥X(s)X−1(s)y∥ exp{
∫ t

s

ϖ(τ)dτ}

= µ1∥y∥ exp{
∫ t

s

ϖ(τ)dτ}.

Since ξ is arbitrary and X(s) is reversible, y is arbitrary. Thus, the following
inequality follows

∥X(t)X−1(s)∥ ≤ µ exp{
∫ t

s

ϖ(τ)dτ}, t ≥ s.

Next, we show the sufficiency. Assume that there exists a nonnegative continu-
ous function ϖ(t) and a constant µ ≥ 1, such that

∥X(t)X−1(s)∥ ≤ µ exp{
∫ t

s

ϖ(τ)dτ}, t ≥ s.

So for arbitrary ξ∈Rn, we have

∥X(t)ξ∥ = ∥X(t)X−1(s)X(s)ξ∥
≤ ∥X(t)X−1(s)∥·∥X(s)ξ∥

≤ µ exp{
∫ t

s

ϖ(τ)dτ}∥X(s)ξ∥

≤ µ exp{
∫ s+h

s

ϖ(τ)dτ}∥X(s)ξ∥.
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Let c(s) = µ exp
( ∫ s+h

s
ϖ(τ)dτ

)
, that is

∥X(t)ξ∥ ≤ c(s)∥X(s)ξ∥s ≤ t ≤ s+ h.

This completes the proof of Theorem 3.1.

Theorem 3.2. Linear system (2.1) is of generalized bounded growth if
∫ t+h

t
∥A(r)∥dr

is nonincreasing.

Proof. For any solution of linear system (2.1) x(t) satisfying

x(t) = x(s) +

∫ t

s

A(r)x(r)dr,

consider s ≤ t ≤ s+ h, then

∥x(t)∥ ≤ ∥x(s)∥+
∫ t

s

∥A(r)∥·∥x(r)∥dr.

Using the Bellman inequality, we get

∥x(t)∥ ≤ ∥x(s)∥ exp{
∫ t

s

∥A(r)∥dr} ≤ ∥x(s)∥ exp{
∫ s+h

s

∥A(r)∥dr}.

Let ∥A(r)∥ = µϱ(r), µ ≥ 1, then

∥x(t)∥ ≤ µ exp{
∫ s+h

s

ϱ(r)dr}∥x(s)∥.

If we denote c(s) = µ exp{
∫ s+h

s
ϱ(r)dr}, then

∥x(t)∥ ≤ c(s)∥x(s)∥,

where s ≤ t ≤ s+ h. This completes the proof of Theorem 3.2.
Next theorem is to give a sufficient and necessary condition for GED based on

the relationship between independent solutions and GED.

Theorem 3.3. Suppose that system (2.1) is of generalized bounded growth. Linear
system (2.1) possesses a GED, if and only if there exist n linearly independent
solutions x1(t), x2(t), ..., xn(t) satisfying

∥
r∑

i=1

aixi(t)∥ ≤ K∥
r∑

i=1

aixi(s)∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

∥
n∑

i=r+1

aixi(t)∥ ≤ K∥
n∑

i=r+1

aixi(s)∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s,

where the constant K > 0, α(t) is a nonnegative continuous function with

lim
t→+∞

∫ t

0

α(ξ)dξ = +∞, lim
t→−∞

∫ 0

t

α(ξ)dξ = +∞,

r is the rank of projection P , a1, a2, ..., an are arbitrary real numbers.
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Proof. First, we prove the necessity. Suppose that linear system (2.1) has a GED,
then for arbitrary ξ ∈ Rn,

∥X̃(t)Pξ∥ = ∥X̃(t)PX̃−1(s)X̃(s)Pξ∥
≤ ∥X̃(t)PX̃−1(s)∥ · ∥X̃(s)Pξ∥

≤ K∥X̃(s)Pξ∥ exp{−
∫ t

s

α(τ)dτ}, (t ≥ s),

and

∥X̃(t)(I − P )ξ∥ = ∥X̃(t)(I − P )X̃−1(s)X̃(s)(I − P )ξ∥
≤ ∥X̃(t)(I − P )X̃−1(s)∥ · ∥X̃(s)(I − P )ξ∥

≤ K∥X̃(s)(I − P )ξ∥ exp{
∫ t

s

α(τ)dτ}, (t ≤ s),

where X̃(t) is a standard matrix of linear system (2.1). Let r be the rank of projec-
tion P . Taking vectors ξ1, ..., ξn ∈ Rn, such that Pξ1, ..., P ξr, (I − P )ξr+1, ..., (I −
P )ξn are linearly independent, set

xi(t) = X̃(t)Pξi, i = 1, 2, ..., r,

xi(t) = X̃(t)(I − P )ξi, i = r + 1, ..., n,

then x1(t), x2(t), ..., xn(t) is n linearly independent solutions of system (2.1), and
∥

r∑
i=1

aixi(t)∥ ≤ K∥
r∑

i=1

aixi(s)∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

∥
n∑

i=r+1

aixi(t)∥ ≤ K∥
n∑

i=r+1

aixi(s)∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s.

Next we prove sufficiency. Since there exist n linearly independent solutions
x1(t), x2(t), ..., xn(t) such that

∥
r∑

i=1

aixi(t)∥ ≤ K∥
r∑

i=1

aixi(s)∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

∥
n∑

i=r+1

aixi(t)∥ ≤ K∥
n∑

i=r+1

aixi(s)∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s.

Let X̃(t) be a standard matrix of linear system(2.1), then there exists a real in-

vertible matrix Q, such that
(
x1(t), x2(t), ..., xn(t)

)
= X̃(t)Q. Let P = QEkQ

−1,

K = K, α = α, then r is the rank of projection P , and for arbitrary ξ ∈ Rn, we
have

∥X̃(t)Pξ∥ ≤ K∥X̃(s)Pξ∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

∥X̃(t)(I − P )ξ∥ ≤ K∥X̃(s)(I − P )ξ∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s.

Let ξ = X̃−1(s)y, then

∥X̃(t)PX̃−1(s)y∥ ≤ K∥X̃(s)PX̃−1(s)y∥ exp{−
∫ t

s

α(τ)dτ}

≤ K∥X̃(s)PX̃−1(s)∥ · ∥y∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

(3.2)
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and
∥X̃(t)(I − P )X̃−1(s)y∥

≤ K∥X̃(s)(I − P )X̃−1(s)y∥ exp{
∫ t

s

α(τ)dτ}

≤ K∥X̃(s)(I − P )X̃−1(s)∥ · ∥y∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s.

(3.3)

Since ξ ∈ Rn is arbitrary, we conclude that for arbitrary y ∈ Rn, the inequalities
(3.2)and (3.3) hold.

∥X̃(t)PX̃−1(s)∥ ≤ K∥X̃(s)PX̃−1(s)∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

∥X̃(t)(I − P )X̃−1(s)∥ ≤ K∥X̃(s)(I − P )X̃−1(s)∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s.

(3.4)
From inequalities (2.6) and (2.7), we conclude that for arbitrary s ∈ R, there exists
a constant M > 0, such that

∥X̃(s)PX̃−1(s)∥ ≤ M, ∥X̃(s)(I − P )X̃−1(s)∥ ≤ M.

Then (3.4) can written as

∥X̃(t)PX̃−1(s)∥ ≤ KM exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

∥X̃(t)(I − P )X̃−1(s)∥ ≤ KM exp{
∫ t

s

α(τ)dτ}, t ≤ s.

Taking K̃ = KM , then system (2.1) has a GED.
This completes the proof of Theorem 3.4.

Now we introduce an interesting lemma.

Lemma 3.1. (i) If x(t) is a continuous real vector function defined on R+(R+ =
[0,+∞)), x(t) ̸= 0, and there exist nonnegative continuous functions ϱ(t) and κ(t),
a constant h > 0, such that the following inequalities

∥x(t)∥ ≤ c(s)∥x(s)∥, 0 ≤ s ≤ t ≤ s+ h,

∥x(t)∥ ≤ θ(u) sup
|u−t|≤h

∥x(u)∥, t ≥ h,

hold, where c(s) and µ have been defined in Definition 3.1, θ(u) = exp{−
∫ u+h

u
κ(τ)dτ}

and κ(τ + u) is non-increasing for u. Then there exists a nonnegative continuous
function α(t) and a constant K ≥ 1, such that one of the following inequalities

∥x(t)∥ ≤ K exp{−
∫ t

s

α(τ)dτ}, t ≥ s ≥ 0,

∥x(t)∥ ≤ K exp{
∫ t

s

α(τ)dτ}, s ≥ t ≥ 0.

hold.
(ii) If x(t) is a continuous real vector function defined on R−(R− = (−∞, 0)),
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x(t) ̸= 0, there exist nonnegative continuous functions ϱ(t) and κ(t), a constant
h > 0, such that the following inequalities

∥x(t)∥ ≤ c(s)∥x(s)∥, s ≤ t ≤ s+ h ≤ 0,

∥x(t)∥ ≤ θ(u) sup
|u−t|≤h

∥x(u)∥, t ≤ −h,

hold, where c(s) and µ have been defined in Definition 3.1, θ(u) = exp{−
∫ u+h

u
κ(τ)dτ}

and κ(τ + u) is non-increasing for s. Then there exists a nonnegative continuous
function α(t) ≥ 0 and a constant K ≥ 1 such that one of the following inequalities

∥x(t)∥ ≤ K exp{−
∫ t

s

α(τ)dτ}, 0 ≥ t ≥ s,

∥x(t)∥ ≤ K exp{
∫ t

s

α(τ)dτ}, 0 ≥ s ≥ t,

hold.

Proof. we show the proof of (i), and the proof of (ii) can use the similar methods.
If

sup
t≥0

∥x(u)∥ < +∞,

let
µ(s) = sup

u≥s
∥x(u)∥,

so for the arbitrary s∈R+, there exists um ≥ s, such that

lim
m→+∞

∥x(um)∥ = µ(s), (3.5)

hold.
Now, we proof that there exists a natural number N , as m ≥ N , we have

um ≤ s+ h.
If not, there exists a subsequence {umk

} of {um}, such that umk
> s+ h, then

∥x(umk
)∥ ≤ θ(u) sup

|u−umk
|≤h

∥x(u)∥

≤ θ(u) sup
u≥umk

−h
∥x(u)∥

= θ(u)µ(umk
− h)

≤ θ(u)µ(s),

as k→∞, we have
∥x(umk

)∥→µ(s),

that is, µ(s) ≤ θ(u)µ(s). Hence, θ(u) ≥ 1, which is a contradiction to θ(u) < 1 due

to the definition θ(u) = exp{−
∫ u+h

u

κ(τ)dτ}. Then we have

µ(s) = sup
s≤u≤s+h

∥x(u)∥.

Therefore, for t ≥ s ≥ 0,

∥x(t)∥ ≤ µ(s) = sup
s≤u≤s+h

∥x(u)∥ ≤ c(s)∥x(s)∥.



A characterization of generalized exponential dichotomy 671

As t ≥ s, we can take s+mh ≤ t < s+ (m+ 1)h, then

∥x(t)∥ ≤ θ(u) sup
|u−t|≤h

∥x(u)∥

≤ θ(u)θ(u− h) sup
|u−t|≤2h

∥x(u)∥

≤ ...
≤ θ(u)θ(u− h)...θ[u− (m− 1)h] sup

|u−t|≤mh

∥x(u)∥

≤ θm(u) sup
|u−t|≤mh

∥x(u)∥

≤ θm(u)c(s)∥x(s)∥

= exp{−m

∫ u+h

u

κ(τ)dτ}µ exp{
∫ s+h

s

ϱ(τ)dτ}∥x(s)∥

= µ exp{
∫ s+h

s

ϱ(τ)dτ −m

∫ u+h

u

κ(τ)dτ}∥x(s)∥.

Then there exists a nonnegative continuous function ϱ̃(t) such that∫ s+h

s

ϱ(τ)dτ −m

∫ u+h

u

κ(τ)dτ ≤ −
∫ t

s

ϱ̃(τ)dτ,

hold. Take K = µ ≥ 1, then

∥x(t)∥ ≤ K exp{−
∫ t

s

ϱ̃(τ)dτ}∥x(s)∥, t ≥ s ≥ 0.

If
sup
t≥0

∥x(u)∥ = +∞,

because of the continuity of x(t), we can take a subsequence {tm} satisfying{
∥x(tm)∥ = θ(u)

−m
c(s)∥x(0)∥,

∥x(t)∥ < θ(u)
−m

c(s)∥x(0)∥, 0 ≤ t < tm,

then h < t1 < t2 < ... < tm < ..., tm→+∞.
Now, we proof tm+1 ≤ tm + h.
If not, there exists m0, such that tm0+1 > tm0 + h. However,

∥x(tm0)∥ ≤ θ(u) sup
|u−tm0

|≤h

∥x(u)∥

≤ θ(u) sup
0≤u≤tm0+h

∥x(u)∥

< θ(u)∥x(tm0+1)∥,

which is in contradiction with ∥x(tm0+1)∥ = θ−1(u)∥x(tm0)∥. So we have
tm+1 ≤ tm + h. For 0 ≤ t ≤ s, assume 0 < tm ≤ t < tm+1, tk ≤ s < tk+1, then

∥x(t)∥ < ∥x(tm+1)∥
= θk−m(u)∥x(tk+1)∥
≤ c(s)θ−1(u)θk−m+1(u)∥x(s)∥

= µθ−1(u) exp{
∫ s+h

s

[ϱ(τ)− (k −m+ 1)κ(τ)]dτ}∥x(s)∥.
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Then there exists a nonnegative continuous function ϱ(t), such that∫ s+h

s

[ϱ(τ)− (k −m+ 1)κ(τ)]dτ ≤
∫ t

s

ϱ(τ)dτ, 0 ≤ t ≤ s,

hold. Take K = µmax{θ−1(u)} ≥ 1, then

∥x(t)∥ ≤ K exp
( ∫ t

s

ϱ(τ)dτ
)
∥x(s)∥, 0 ≤ t ≤ s.

This completes the proof of Lemma 3.1.

Theorem 3.4. If linear system (2.1) is generalized bounded growth, and there exists
a nonnegative continuous functions κ(t), a constant h > 0, n-linearly independent
solutions of linear system(2.1) x1(t), x2(t), ..., xn(t), and any solution of system
(2.1) x(t) satisfies

∥x(t)∥ ≤ θ(u) sup
|u−t|≤h

∥x(u)∥,

lim inf
t→+∞

∥xi(t)∥ < ∞, (i = 1, 2, ..., r),

lim inf
t→−∞

∥xi(t)∥ < ∞, (i = r + 1, r + 2, ..., n),

where θ(u) = exp{−
∫ u+h

u
κ(τ)dτ} and κ(τ+u) is non-increasing for u. Then linear

system (2.1) has a GED, and the rank of projection P is r.

Proof. Since linear system (2.1) is of generalized bounded growth, for h > 0,
there exists a continuous function ϱ(t) ≥ 0, such that any solution of linear system
(2.1) x(t) satisfies

∥x(t)∥ ≤ c(s)∥x(s)∥, s ≤ t ≤ s+ h,

where c(s) and µ have been defined in Definition 3.1. Therefore, for arbitrary
constants a1, a2, ..., an, we have

∥
n∑

i=1

aixi(t)∥ ≤ c(s)∥
n∑

i=1

aixi(s)∥, s ≤ t ≤ s+ h,

as ∥x(t)∥ ≤ θ(u) sup
|u−t|≤h

∥x(u)∥, now, we consider the case on R+.

From Lemma 3.1, for arbitrary constants a1, a2, ..., ar, we have

lim inf
t→+∞

∥
r∑

i=1

aixi(t)∥ < +∞,

then, for t ≥ s ≥ 0, there exists a continuous function α1(t) ≥ 0, and a constant
K1 ≥ 1, satisfying

∥
r∑

i=1

aixi(t)∥ ≤ K1∥
r∑

i=1

aixi(s)∥ exp{−
∫ t

s

α1(τ)dτ}. (3.6)

Then we consider the case on R−.
From Lemma 3.1, we derive for 0 ≥ t ≥ s, there exists a nonnegative continuous
function α2(t), and a constant K2 ≥ 1 satisfying

∥
r∑

i=1

aixi(t)∥ ≤ K2∥
r∑

i=1

aixi(s)∥ exp{−
∫ t

s

α2(τ)dτ}, (3.7)
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or for 0 ≥ s ≥ t,

∥
r∑

i=1

aixi(t)∥ ≤ K2∥
r∑

i=1

aixi(s)∥ exp{
∫ t

s

α2(τ)dτ}. (3.8)

If (3.8) hold, then from (3.6) and (3.8), we can derive

lim
t→+∞

∥
r∑

i=1

aixi(t)∥ = 0,

and

lim
t→−∞

∥
r∑

i=1

aixi(t)∥ = 0.

Therefore, there exists t0∈R, such that

∥
r∑

i=1

aixi(t0)∥ = sup
t∈R

∥
r∑

i=1

aixi(t)∥,

hold. However, we can get from our conditions, for arbitrary t∈R, we have

∥
r∑

i=1

aixi(t0)∥ ≤ θ(u) sup
t∈R

∥
r∑

i=1

aixi(t)∥.

Hence θ(u) ≥ 1, which is a contradiction to θ(u) < 1 due to the definition

θ(u) = exp{−
∫ u+h

u

κ(τ)dτ}.

Then (3.7) hold. take K = max{K1,K2}, α(t) = min{α1(t), α2(t)}, then from (3.6)
and (3.7), we can get

∥
k∑

i=1

aixi(t)∥ ≤ K∥
k∑

i=1

aixi(s)∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s.

Similarly,we also have

∥
n∑

i=k+1

aixi(t)∥ ≤ K∥
n∑

i=k+1

aixi(s)∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s.

From Theorem 3.3, we know linear system (2.1) has a GED. This completes the
proof of Theorem 3.4.

Now we need an interesting lemma.

Lemma 3.2. (i) If x(t) is a continuous real vector function defined on R+(R+ =
[0,+∞)), x(t) ̸= 0, and there exist nonnegative continuous functions ϱ(t) and κ̃(t),
a constant h > 0, such that the following inequalities

∥x(t)∥ ≤ c(s)∥x(s)∥, 0 ≤ s ≤ t ≤ s+ h,

∥x(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥x(u)∥, t ≥ h,
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hold, where c(s) and µ have been defined in Definition 3.1, θ̃(u) = exp{
∫ u+h

u
κ̃(τ)dτ}

and κ̃(τ + u) is non-increasing for u. Then there exists a nonnegative continuous
function α(t), and a constant K ≥ 1, such that one of the following inequalities

∥x(t)∥ ≤ K exp{−
∫ t

s

α(τ)dτ}, t ≥ s ≥ 0,

∥x(t)∥ ≤ K exp{
∫ t

s

α(τ)dτ}, s ≥ t ≥ 0,

hold.
(ii) If x(t) is a continuous real vector function defined on R−(R− = (−∞, 0)),
x(t) ̸= 0, and there exist nonnegative continuous functions ϱ(t) and κ̃(t), a constant
h > 0, such that the following inequalities

∥x(t)∥ ≤ c(s)∥x(s)∥, s ≤ t ≤ s+ h ≤ 0,

∥x(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥x(u)∥, t ≤ −h,

hold, where c(s) and µ have been defined in Definition 3.1, θ̃(u) = exp{
∫ u+h

u
κ̃(τ)dτ}

and κ̃(τ + u) is non-increasing for u. Then there exists a continuous function
α(t) ≥ 0, a constant K ≥ 1, such that one of the following inequalities

∥x(t)∥ ≤ K exp{−
∫ t

s

α(τ)dτ}, 0 ≥ t ≥ s,

∥x(t)∥ ≤ K exp{
∫ t

s

α(τ)dτ}, 0 ≥ s ≥ t,

hold.

Proof. We prove conclusion (i) only the proof of (ii) is same as that of (i). If
inf
t≥0

∥x(t)∥ > 0, we take λ(s) = inf
u≥s

∥x(u)∥. Then for s ≥ t ≥ h,

∥x(s)∥ ≥ θ̃(u) inf
|u−s|≤h

∥x(u)∥ ≥ θ̃(u)λ(s− h).

By the definition of λ(s), there are um ≥ s with

lim
m→+∞

∥x(um)∥ = λ(s). (3.9)

Ṅow we proof that there exists a N such that um ≤ s + h for m ≥ N . Or else,
there exists a subsequence {umk

} of {um} with umk
> s+ h. But

∥x(umk
)∥ ≥ θ̃(u) inf

|u−umk
|≤h

∥x(u)∥

≥ θ̃(u)λ(umk
− h)

≥ θ̃(u)λ(s).

This is contrary to (3.9). So there exists N such that um ≤ s+h for m ≥ N . Then
λ(s) = inf

s≤u≤s+h
∥x(u)∥ and for 0 ≤ s− 2h < s+ h ≤ t ≤ s,

∥x(s)∥ ≥ θ̃2(u) inf
|u−s|≤2h

∥x(u)∥

≥ θ̃2(u)λ(s− 2h)

= θ̃2(u) inf
s−2h≤u≤s−h

∥x(u)∥

≥ θ̃2(u)c−2(t)∥x(t)∥,
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for t+ (k − 1)h ≤ s ≤ t+ kh,

∥x(s)∥ ≥ θ̃(u) inf
|u−s|≤h

∥x(u)∥

≥ θ̃2(u) inf
|u−s|≤2h

∥x(u)∥

≥ ...

≥ θ̃k+1(u) inf
|u−s|≤(k+1)h

∥x(u)∥

≥ θ̃k+1(u)λ(s− (k + 1)h)

= θ̃k+1(u) inf
s−(k+1)h≤u≤s−kh

∥x(u)∥

≥ θ̃k+1(u)c−2(t)∥x(t)∥

= µ−2 exp{(k + 1)

∫ u+h

u

κ̃(τ)dτ − 2

∫ t+h

t

ϱ(τ)dτ}∥x(t)∥.

Then there exists a continuous function α̃(t)≥0 such that

−(k + 1)

∫ u+h

u

κ̃(τ)dτ + 2

∫ t+h

t

ϱ(τ)dτ ≤
∫ t

s

α̃(τ)dτ,

hold. Take K = µ2≥1, then

∥x(t)∥ ≤ K exp{
∫ t

s

α̃(τ)dτ}∥x(s)∥, s ≥ t ≥ 0.

If
inf
t≥0

∥x(u)∥ = 0.

If inf
t≥0

∥x(t)∥ = 0, we take tm ≥ 0 such that

{
∥x(tm)∥ = θ̃−m(u)c(s)∥x(0)∥,
∥x(t)∥ > θ̃−m(u)c(s)∥x(0)∥, 0 ≤ t < tm.

So h ≤ t1 < t2 < ... < tm < tm+1 < ..., now we prove that tm+1 ≤ tm + h. Or else,
there exists m0, such that tm0+1 > tm0 + h. So

∥x(tm0+1)∥ < inf
0≤u≤tm0+h

∥x(u)∥

≤ inf
|u−tm0 |≤h

∥x(u)∥

≤ θ̃−1(u)∥x(tm0)∥.

This is in contrary to ∥x(tm0+1)∥ = θ̃−1(u)∥x(tm0)∥. So tm+1 ≤ tm + h.
For t ≥ s ≥ 0, suppose that tm ≤ t < tm+1, tk ≤ s < tk+1, then

∥x(s)∥ > ∥x(tk+1)∥
= θ̃m−k−1(u)∥x(tm)∥
≥ c−1(s)θ̃m−k−1(u)∥x(t)∥

= µ−1 exp{(m− k − 1)

∫ u+h

u

κ̃(τ)dτ −
∫ s+h

s

ϱ(τ)dτ}∥x(t)∥.
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Then there exists a continuous function α(t) ≥ 0 such that

−(m− k − 1)

∫ u+h

u

κ̃(τ)dτ +

∫ s+h

s

ϱ(τ)dτ ≤ −
∫ t

s

α(τ)dτ,

hold. Take K = µ ≥ 1, then

∥x(t)∥ ≤ K exp{−
∫ t

s

α(τ)dτ}∥x(s)∥, t ≥ s ≥ 0.

This completes the proof of Lemma 3.2.

Theorem 3.5. If linear system (2.1) is of generalized bounded growth, and there
exists a nonnegative continuous function κ̃(t), a constant h > 0 such that n linearly
independent solutions of linear system(2.1) x1(t), x2(t), ..., xn(t) satisfy

∥
r∑

i=1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
r∑

i=1

aixi(u)∥,

∥
n∑

i=r+1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
n∑

i=r+1

aixi(u)∥,

lim sup
t→−∞

∥
r∑

i=1

aixi(t)∥ > 0,

lim sup
t→+∞

∥
n∑

i=r+1

aixi(t)∥ > 0,

where θ̃(u) = exp{
∫ u+h

u
κ̃(τ)dτ} and κ̃(τ + u) is non-increasing for u. Then linear

system (2.1) has a GED, and the rank of projection P is r.

Proof. Since linear system (2.1) has generalized bounded growth, for h > 0, there
exists a continuous function ϱ(t)≥0, such that any solution of linear system (2.1)
x(t) satisfies

∥x(t)∥ ≤ c(s)∥x(s)∥, s ≤ t ≤ s+ h,

where c(s) and µ have been defined in Definition 3.1. That is

∥
r∑

i=1

aixi(t)∥ ≤ c(s)∥
r∑

i=1

aixi(s)∥, s ≤ t ≤ s+ h.

For t ∈ R−, because lim sup
t→−∞

∥
r∑

i=1

aixi(t)∥ > 0 and Lemma 3.2, then for 0 ≥ t ≥ s,

there exists a continuous function α1(t) ≥ 0, and a constant K1 ≥ 1, satisfying

∥
r∑

i=1

aixi(t)∥ ≤ K1∥
r∑

i=1

aixi(s)∥ exp{−
∫ t

s

α1(τ)dτ}. (3.10)

For t ∈ R+, from Lemma 3.2, we derive for t ≥ s ≥ 0, there exists a nonnegative
continuous function α2(t), and a constant K2 ≥ 1 satisfying

∥
r∑

i=1

aixi(t)∥ ≤ K2∥
r∑

i=1

aixi(s)∥ exp{−
∫ t

s

α2(τ)dτ}, (3.11)

or for s ≥ t ≥ 0,

∥
r∑

i=1

aixi(t)∥ ≤ K2∥
r∑

i=1

aixi(s)∥ exp{
∫ t

s

α2(τ)dτ}. (3.12)
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If (3.11) hold, then from (3.9) and (3.11), we can derive

lim
t→−∞

∥
r∑

i=1

aixi(t)∥ = +∞,

and

lim
t→+∞

∥
r∑

i=1

aixi(t)∥ = +∞.

Therefore, there exists t0∈R, such that

∥
r∑

i=1

aixi(t0)∥ = inf
u∈R

∥
r∑

i=1

aixi(u)∥,

hold. However, we can get from our conditions, for arbitrary t∈R, we have

∥
r∑

i=1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
r∑

i=1

aixi(u)∥.

Hence, θ̃(u) ≤ 1, which is a contradiction to θ̃(u) > 1 due to the definition

θ̃(u) = exp{
∫ u+h

u

κ̃(τ)dτ}.

Hence, (3.10) hold. take K = max{K1,K2}, α(t) = min{α1(t), α2(t)}, then from
(3.9) and (3.10), we can get

∥
k∑

i=1

aixi(t)∥ ≤ K∥
k∑

i=1

aixi(s)∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s.

Similarly, we also have

∥
n∑

i=k+1

aixi(t)∥ ≤ K∥
n∑

i=k+1

aixi(s)∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s.

From Theorem 3.3, we know that linear system (2.1) has a GED. This completes
the proof of Theorem 3.5.

Theorem 3.6. If linear system (2.1) is of generalized bounded growth, and there
exist nonnegative continuous functions ϱ(t), κ(t), κ̃(t), a constant h > 0 such that
n linearly independent solutions of system (2.1) x1(t), x2(t), ..., xn(t) satisfy

∥
r∑

i=1

aixi(t)∥ ≤ θ(u) sup
|u−t|≤h

∥
r∑

i=1

aixi(u)∥,

∥
n∑

i=r+1

aixi(t)∥ ≤ θ(u) sup
|u−t|≤h

∥
n∑

i=r+1

aixi(u)∥,

∥
r∑

i=1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
r∑

i=1

aixi(u)∥,

∥
n∑

i=r+1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
n∑

i=r+1

aixi(u)∥,

where c(s) and µ have been defined in Definition 3.1, θ̃(u) = exp{
∫ u+h

u
κ̃(τ)dτ}

θ(u) = exp{−
∫ u+h

u
κ(τ)dτ}. Moreover, κ̃(τ + u) and κ(τ + u) are non-increasing

for u. Then linear system (2.1) has a GED, and the rank of projection P is r.
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Proof. As linear system (2.1) is of generalized bounded growth, for h > 0, there
exists a continuous function ϱ(t) ≥ 0, such that any solution of linear system (2.1)
x(t) satisfies

∥x(t)∥ ≤ c(s)∥x(s)∥, s ≤ t ≤ s+ h,

where c(s) and µ have been defined in Definition 3.1. Then for any solution x(t) of
system (2.1), we have

∥
r∑

i=1

aixi(t)∥ ≤ c(s)∥
r∑

i=1

aixi(s)∥, s ≤ t ≤ s+ h.

For t ∈ R+, by Lemma 3.1, there exists a nonnegative continuous function α1(t)
and a constant K1 ≥ 1, such that

∥
r∑

i=1

aixi(t)∥ ≤ K1∥
r∑

i=1

aixi(s) exp{−
∫ t

s

α1(τ)dτ}, t ≥ s ≥ 0, (3.13)

or

∥
r∑

i=1

aixi(t)∥ ≤ K1∥
r∑

i=1

aixi(s) exp{
∫ t

s

α1(τ)dτ}, s ≥ t ≥ 0. (3.14)

For t ∈ R−, by Lemma 3.1, there exists a nonnegative continuous function α2(t)
and a constant K2 ≥ 1, such that

∥
r∑

i=1

aixi(t)∥ ≤ K2∥
r∑

i=1

aixi(s) exp{
∫ t

s

−α2(τ)dτ}, 0 ≥ t ≥ s, (3.15)

or

∥
r∑

i=1

aixi(t)∥ ≤ K2∥
r∑

i=1

aixi(s) exp{
∫ t

s

α2(τ)dτ}, 0 ≥ s ≥ t. (3.16)

(I) Suppose that (3.13) is true. Then (3.15) holds. Or else, (3.16) is true. By (3.13)
and (3.16),

lim
t→+∞

∥
r∑

i=1

aixi(t)∥ = 0,

lim
t→−∞

∥
r∑

i=1

aixi(t)∥ = 0.

So there exists t0 ∈ R, such that

∥
r∑

i=1

aixi(t0)∥ = sup
t∈R

∥
r∑

i=1

aixi(t)∥.

This is contrary to condition to

∥
r∑

i=1

aixi(t)∥ ≤ θ(u) sup
|t−u|≤h

∥
r∑

i=1

aixi(t)∥.

So (3.15) is true. Let α(t) = min{α1(t), α2(t)}, K = max{K1,K2}. By (3.13) and
(3.15), we have

∥
r∑

i=1

aixi(t)∥ ≤ K∥
r∑

i=1

aixi(s) exp{
∫ t

s

−α(τ)dτ}, t ≥ s.
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(II) Suppose that (3.14) is true. Then (3.16) holds. Or else, (3.15) is true. By
(3.14) and (3.15),

lim
t→+∞

∥
r∑

i=1

aixi(t)∥ = +∞,

lim
t→−∞

∥
r∑

i=1

aixi(t)∥ = +∞.

So there exists t ∈ R, such that

∥
r∑

i=1

aixi(t)∥ = inf
t∈R

∥
r∑

i=1

aixi(t)∥.

This is contrary to the condition

∥
r∑

i=1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
r∑

i=1

aixi(u)∥.

So (3.15) is true. Let α̃(t) = min{α1(t), α2(t)}, K̃ = max{K1,K2}. By (3.13) and
(3.15), we have

∥
r∑

i=1

aixi(t)∥ ≤ K̃∥
r∑

i=1

aixi(s) exp{
∫ t

s

α̃(τ)dτ}, t ≤ s.

Similarly, we can prove

∥
n∑

i=r+1

aixi(t)∥ ≤ K∥
n∑

i=r+1

aixi(s) exp{
∫ t

s

−α(τ)dτ}, t ≥ s.

or

∥
n∑

i=r+1

aixi(t)∥ ≤ K∥
n∑

i=r+1

aixi(s) exp{
∫ t

s

α(τ)dτ}, t ≤ s.

From Theorem 3.3, we can deduce that system (2.1) has a GED.
This completes the proof of Theorem 3.6.

4. Properties of GED

Now, we prove some important properties of GED.

Theorem 4.1. If linear system (2.1) has a GED, then system (2.1) has non trivial
bounded solutions.

Proof. By way of contradiction, suppose that x(t) is any nontrivial bounded so-
lution of linear system (2.1), then

x(t) = X(t)X−1(0)x(0) = X(t)PX−1(0)x(0) +X(t)(I − P )X−1(0)x(0).

In view of x(0) ̸= 0, we know that at least one of PX−1(0)x(0) and (I−P )X−1(0)x(0)
is not equal to zero. So we proceed with two cases:

Case 1: If PX−1(0)x(0) ̸= 0, take ξ = X−1(0)x(0), from the first inequality of
(2.5), we have

∥X(t)PX−1(0)x(0)∥ ≥ K−1∥X(0)PX−1(0)x(0)∥ exp{
∫ 0

t

α(τ)dτ}.
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From the second inequality of (2.5), we have

∥X(t)(I − P )X−1(0)x(0)∥ ≤ K∥X(0)(I − P )X−1(0)x(0)∥ exp{
∫ t

0

α(τ)dτ}

= K∥X(0)(I − P )X−1(0)x(0)∥ exp{−
∫ 0

t

α(τ)dτ}.

Letting t→−∞, we have

∥x(t)∥ ≥ ∥X(t)PX−1(0)x(0)∥ − ∥X(t)(I − P )X−1(0)x(0)∥ ≥ →+∞− 0 = +∞,

which contradicts to the boundedness of X(t).
Case 2: If (I−P )X−1(0)x(0) ̸= 0, similar arguments show that as t→+∞, we

have ∥x(t)∥→ + ∞, which also contradicts to the boundedness of X(t). So linear
system has nontrivial bounded solution. This completes the proof of Theorem 4.1.

Remark 4.1. Theorem 4.1 doesn’t hold, if linear system (2.1) has a GED only on
R+ or R−. In fact, if linear system (2.1) has a GED on R+, then linear system (2.1)
has a r-dimension bounded solution, where r is the rank of the projection P .

Theorem 4.2. Suppose that system (2.1) has a GED and P ̸= 0 or I, then system
(2.1) is a diagonal block.

Proof. To prove system (2.1) is a diagonal block, our main task is to apply Defi-
nition 2.3. To this ends, we proceed two steps.
Step1: We need prove system (2.3) is kinematically similar to system (2.2). From
(2.3), we know ∥S(t)∥ is bounded. From (2.4) and (1.3), we have

∥S−1(t)∥ ≤ [∥X(t)PX−1(t)∥2 + ∥X(t)(I − P )X−1(t)∥2] 12
≤ (K2 +K2)

1
2 =

√
2K,

that is, ∥S−1(t)∥ is bounded. From Lemma 2.2, we know S(t) is continuous and
differentiable. Then S(t) is a Lyapunov matrix. Set

R′(t)R−1(t) = B(t), (4.1)

then R(t) is a fundamental square matrix of the linear system (2.2). Moreover,

S′(t) = (X(t)R−1(t))′

= X ′(t)R−1(t) +X(t)(R−1(t))′

= A(t)X(t)R−1(t)−X(t)R−1(t)R′(t)R−1(t).

From (4.1), we have
S′(t) = A(t)S(t)− S(t)B(t).

That is, system (2.1) is kinematically similar to system (2.2).

Step2: We show that B(t) has a diagonal block of the form

(
B1(t)

B2(t)

)
,

where the ranks of B1(t), B2(t) are lower than B(t). Since R(t) is a diagonal block,
then R′(t), R−1(t) are also diagonal blocks, so B(t) = R′(t)R−1(t) is also a diagonal

block. Suppose B(t) =

(
B1(t)

B2(t)

)
, obviously, the rank of B1(t) is the rank

of the projection P , the rank of B2(t) is the rank of the projection (I − P ). This
completes the proof of Theorem 4.2.
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Theorem 4.3. If linear system (2.1) has a GED, then there exists a nonnegative
continuous function κ(t), a constant h > 0, such that any solution of linear system
(2.1) x(t) satisfies

∥x(t)∥ ≤ θ(u) sup
|u−t|≤h

∥x(u)∥,

and linear system(2.1) has n linearly independent solutions x1(t), x2(t), ..., xn(t),
satisfying

lim inf
t→+∞

∥xi(t)∥ < ∞, (i = 1, 2, ..., r),

and
lim inf
t→−∞

∥xi(t)∥ < ∞, (i = r + 1, r + 2, ..., n),

where θ(u) = exp{−
∫ u+h

u
κ(τ)dτ} and r is the rank of projection P .

Proof. As there exists a nonnegative continuous function α(t), a constant K ≥ 1,
and a projection P , such that (1.3) hold, then for a nonnegative continuous function

θ(u) = exp{−
∫ u+h

u

κ(τ)dτ}.

Take h > 0, such that the following inequality

K−1 exp{
∫ s+h

s

α(τ)dτ} −K exp{−
∫ s+h

s

α(τ)dτ} ≥ 2θ−1(u),

hold. For ξ∈Rn, take any s∈R, assume that X̃(t) is a standard matrix of linear

system (2.1), then x(t) = X̃(t)ξ.

Case 1: If ∥X̃(s)(I − P )ξ∥ ≥ ∥X̃(s)Pξ∥, then

∥X̃(t)Pξ∥ = ∥X̃(t)PX̃−1(s)X̃(s)Pξ∥
≤ ∥X̃(t)PX̃−1(s)∥·∥X̃(s)Pξ∥

≤ K∥X̃(s)Pξ∥exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

(4.2)

and

∥X̃(t)(I − P )ξ∥ = ∥X̃(t)(I − P )X̃−1(s)X̃(s)(I − P )ξ∥
≤ ∥X̃(t)(I − P )X̃−1(s)∥·∥X̃(s)(I − P )ξ∥

≤ K∥X̃(s)(I − P )ξ∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s.

(4.3)

From (4.3), we have

∥X̃(s)(I − P )ξ∥ ≥ K−1∥X̃(t)(I − P )ξ∥exp{
∫ s

t

α(τ)dτ}, t ≤ s,

then exchange s and t, for t ≥ s, we have

∥X̃(t)(I − P )ξ∥ ≥ K−1∥X̃(s)(I − P )ξ∥exp{
∫ t

s

α(τ)dτ}. (4.4)
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From (4.2) and (4.4), for t ≥ s, we have

∥x(t)∥ = ∥X̃(t)(I − P )ξ + X̃(t)Pξ∥
≥ ∥X̃(t)(I − P )ξ∥ − ∥X̃(t)Pξ∥

≥ K−1∥X̃(s)(I − P )ξ∥exp{
∫ t

s

α(τ)dτ} −K∥X̃(s)Pξ∥exp{−
∫ t

s

α(τ)dτ}

≥ K−1∥X̃(s)(I − P )ξ∥exp{
∫ t

s

α(τ)dτ}

−K∥X̃(s)(I − P )ξ∥exp{−
∫ t

s

α(τ)dτ}

= [K−1exp{
∫ t

s

α(τ)dτ} −K exp{−
∫ t

s

α(τ)dτ}]·∥X̃(s)(I − P )ξ∥,

take t = s+ h, then

∥x(s+ h)∥ ≥ [K−1exp{
∫ s+h

s

α(τ)dτ} −Kexp{−
∫ s+h

s

α(τ)dτ}]∥X̃(s)(I − P )ξ∥.

(4.5)
Moreover,

∥x(s)∥ = ∥X̃(s)(I − P )ξ + X̃(s)Pξ∥
≤ ∥X̃(s)(I − P )ξ∥+ ∥X̃(s)Pξ∥
≤ 2∥X̃(s)(I − P )ξ∥,

that is ∥X̃(s)(I − P )ξ∥ ≥ 1

2
∥x(s)∥.

From (4.5), we have

∥x(s+ h)∥ ≥ 1

2
∥x(s)∥·2θ−1(u) = θ−1(u)∥x(s)∥,

that is, ∥x(s)∥ ≤ θ(u)∥x(s+ h)∥, then we have

∥x(s)∥ ≤ θ(u) sup
|s−u|≤h

∥x(u)∥.

Case 2: If ∥X̃(s)(I − P )ξ∥ < ∥X̃(s)Pξ∥, Similarly, we can derive

∥x(s)∥ ≤ θ(u) sup
|u−s|≤h

∥x(u)∥.

In conclusion, for any solution of linear system (2.1) x(t), we have

∥x(s)∥ ≤ θ(u) sup
|s−u|≤h

∥x(u)∥.

From Theorem 3.3, we have n linearly independent solutions of linear system (2.1)
x1(t), x2(t), ..., xn(t) satisfy

∥
r∑

i=1

aixi(t) ≤ K∥
r∑

i=1

aixi(s)∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

∥
n∑

i=r+1

aixi(t)∥ ≤ K∥
n∑

i=r+1

aixi(s)∥ exp
( ∫ t

s

α(τ)dτ
)
, t ≤ s,
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where r is the rank of projection P , a1, a2, ..., an are arbitrary constants.
Obviously, we have{

lim inf
t→+∞

∥xi(t)∥ < ∞, (i = 1, 2, ..., r),

lim inf
t→−∞

∥xi(t)∥ < ∞, (i = r + 1, r + 2, ..., n).

This completes the proof of Theorem 4.3.

Theorem 4.4. If linear system (2.1) has a GED, then there exists a nonnegative
continuous function κ̃(t), a constant h > 0 such that n linearly independent solutions
of linear system(2.1) x1(t), x2(t), ..., xn(t) satisfy

∥
r∑

i=1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
r∑

i=1

aixi(u)∥,

∥
n∑

i=r+1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
n∑

i=r+1

aixi(u)∥,

lim sup
t→−∞

∥
r∑

i=1

aixi(t)∥ > 0,

lim sup
t→+∞

∥
n∑

i=r+1

aixi(t)∥ > 0,

where θ̃(u) = exp{
∫ u+h

u
κ̃(τ)dτ} and κ̃(τ + u) is non-increasing for u, the rank of

projection P is r, a1, a2, ..., an are arbitrary constants.

Proof. Since system (2.1) has a GED, from Theorem 3.3, we know there exists a
nonnegative continuous function α(t), a constant K≥1 and n linearly independent
solutions x1(t), x2(t), ..., xn(t) such that

∥
r∑

i=1

aixi(t)∥ ≤ K∥
r∑

i=1

aixi(s)∥ exp{−
∫ t

s

α(τ)dτ}, t ≥ s,

∥
n∑

i=r+1

aixi(t)∥ ≤ K∥
n∑

i=r+1

aixi(s)∥ exp{
∫ t

s

α(τ)dτ}, t ≤ s,

where r is the rank of projection P , a1, a2, ..., an are arbitrary constants, then

lim sup
t→−∞

∥
r∑

i=1

aixi(t)∥ = lim
t→−∞

∥
r∑

i=1

aixi(t)∥ = +∞,

lim sup
t→+∞

∥
n∑

i=r+1

aixi(t)∥ = lim
t→+∞

∥
n∑

i=r+1

aixi(t)∥ = +∞.

Now it is suffice to prove that there exists a nonnegative continuous function

θ̃(u) = exp{
∫ u+h

u

κ̃(τ)dτ},

and a constant h > 0, such that

∥
r∑

i=1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
r∑

i=1

aixi(u)∥,

∥
n∑

i=r+1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
n∑

i=r+1

aixi(u)∥.
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For arbitrary s ∈ R, take t = s+ h, then

∥
r∑

i=1

aixi(s+ h)∥ ≤ K∥
r∑

i=1

aixi(s)∥ exp{−
∫ s+h

s

α(τ)dτ},

that is

∥
r∑

i=1

aixi(s)∥ ≥ K−1∥
r∑

i=1

aixi(s+ h)∥ exp{
∫ s+h

s

α(τ)dτ}

≥ θ̃(u)∥
r∑

i=1

aixi(s+ h)∥

≥ θ̃(u) inf
|u−s|≤h

∥
r∑

i=1

aixi(u)∥.

Similarly, we can prove

∥
n∑

i=r+1

aixi(s)∥ ≥ θ̃(u) inf
|u−s|≤h

∥
n∑

i=r+1

aixi(u)∥.

This completes the proof of Theorem 4.4.

Theorem 4.5. Suppose that system (2.1) has a GED, then there exist nonnega-
tive continuous functions ϱ(t), κ(t), κ̃(t), a constant h > 0 such that n linearly
independent solutions of system (2.1) x1(t), x2(t), ..., xn(t) satisfy

∥
r∑

i=1

aixi(t)∥ ≤ θ(u) sup
|u−t|≤h

∥
r∑

i=1

aixi(u)∥,

∥
n∑

i=r+1

aixi(t)∥ ≤ θ(u) sup
|u−t|≤h

∥
n∑

i=r+1

aixi(u)∥,

∥
r∑

i=1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
r∑

i=1

aixi(u)∥,

∥
n∑

i=r+1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h

∥
n∑

i=r+1

aixi(u)∥,

where c(s) and µ have been defined in Definition 3.1, θ̃(u) = exp{
∫ u+h

u
κ̃(τ)dτ}

θ(u) = exp{−
∫ u+h

u
κ(τ)dτ}. Moreover, κ̃(τ + u) and κ(τ + u) are non-increasing

for u. Then linear system (2.1) has a GED, and the rank of projection P is r,
a1, a2, ..., an are arbitrary constants.

Proof. Because system (2.1) has a GED, from Theorem 4.4, there exist nonneg-

ative continuous functions α(t), θ̃(u) = exp{
∫ u+h

u
κ̃(τ)dτ}, constants h1 > 0, K≥1

and n linear independent solutions of (2.1) x1(t), x2(t), ..., xn(t) such that

∥
r∑

i=1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h1

∥
r∑

i=1

aixi(u)∥.

By Coppel [4], there is h2 > 0, for any solution x(t) of system (2.1) such that

∥x(t)∥ ≤ θ(u) sup
|u−t|≤h2

∥x(u)∥.

So

∥
r∑

i=1

aixi(t)∥ ≤ θ(u) sup
|u−t|≤h2

∥
r∑

i=1

aixi(u)∥.
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Let h = max{h1, h2}. Hence,
∥

n∑
i=r+1

aixi(t)∥ ≤ θ(u) sup
|u−t|≤h2

∥
n∑

i=r+1

aixi(u)∥,

∥
r∑

i=1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h1

∥
r∑

i=1

aixi(u)∥.

Similarly, we can prove that
∥

r∑
i=1

aixi(t)∥ ≤ θ(u) sup
|u−t|≤h2

∥
r∑

i=1

aixi(u)∥,

∥
n∑

i=r+1

aixi(t)∥ ≥ θ̃(u) inf
|u−t|≤h1

∥
n∑

i=r+1

aixi(u)∥.

This completes the proof of Theorem 4.5.

Theorem 4.6. Suppose that system (2.1) has a GED and system (2.1) is kinemat-
ically similar to system (2.2), then system (2.2) also has a GED.

Proof. Let Y (t) be a fundamental matrix of system (2.2). As system (2.1) has a
GED, then there exists a projection P and K > 0 such that

∥X(t)PX−1(s)∥ ≤ K exp{−
∫ t

s

α(τ)dτ}, for t ≥ s, s, t ∈ R,

∥X(t)(I − P )X−1(s)∥ ≤ K exp{
∫ t

s

α(τ)dτ}, for t ≤ s, s, t ∈ R,

hold. Since system (2.1) is kinematically similar to system (2.2), from Lemma 2.1,
we know there exists a Lyapunov transformation y = S(t)x which can send system
(2.1) into system (2.2), then for t ≥ s, we have

∥Y (t)PY −1(s)∥ = ∥S(t)X(t)PX−1(s)S−1(t)∥
≤ ∥S(t)∥ · ∥X(t)PX−1(s)∥ · ∥S−1(t)∥
≤ ∥X(t)PX−1(s)∥

≤ K exp{−
∫ t

s

α(τ)dτ}.

Similarly, for t ≤ s, we have

∥Y (t)(I − P )Y −1(s)∥ ≤ K exp{
∫ t

s

α(τ)dτ}.

That is to say, system (2.2) also has a GED. This completes the proof of Theorem
4.6.
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