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A NEW DEFY FOR ITERATION METHODS

Abdon Atangana

Abstract The work presents an adaptation of iteration method for solving a
class of thirst order partial nonlinear differential equation with mixed deriva-
tives. The class of partial differential equations present here is not solvable
with neither the method of Green function, the most usual iteration methods
for instance variational iteration method, homotopy perturbation method and
Adomian decomposition method, nor integral transform for instance Laplace,
Sumudu, Fourier and Mellin transform. We presented the stability and con-
vergence of the used method for solving this class of nonlinear chaotic equa-
tions. Using the proposed method, we obtained exact solutions to this kind
of equations.
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1. Introduction

In the last century, mathematics tools were used to model real world problems,
which occur in all branches of sciences. Many chaotic problems are usually de-
scribed via ordinary, partial, or fractional differential equations. It is important
to point out that, the use of this differential equation is one hand to predict the
future behavior of the phenomenon under investigation. This investigation can be
done numerically or analytically. Doing the investigation analytically is usually a
very difficult task. In the recent decade, many scholars have focused their attention
in developing analytical methods to find the solution of these equations describing
real world problem. All of these methods have their strength and their limitations
while dealing with nonlinear chaotic model. In the recent decade, it was observed
by many scholars in the area of partial and ordinary differential equations that
to find the exact solution of this class of equation is difficult task. Nevertheless,
scholars in this area have developed numerous iterative methods to deal with this
class of equations. Their methods sometime are used to find exact or approximate
solutions. One of the commonly used iteration methods is the Homotopy pertur-
bation method [8, 11, 14–16]. Atangana has modified this method recently, while
solving the conventional groundwater flow equation [1,7]. This modified version was
found to be very helpful and powerful tool to deal with nonlinear, linear ordinary
and partial differential equations including those with non-integer order generally
called fractional differential equations [2, 4, 10, 12, 13]. However, recently, a class of
third orders differential equation namely Mboctara equations were presented and
examined in the work by [3]. The so-called Mboctara equations were analytically
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solved via the triple Laplace transform. Since then, no other method has been used
to handle this class of partial differential equation, in particular no iteration meth-
ods has been used in this regards due to the form of the equation. The Mboctara
equation was given in the following form

∂xytu(x, y, t) + u(x, y, t) = f(x, y, t). (1.1)

In this work, we are not much interesting in the above equation, since it is linear and
also it was solved via the triple Laplace transform. We are instead interested in the
general and nonlinear form of this class of equation. It is perhaps important to recall
that, when dealing with nonlinear equations, neither the Laplace nor the Fourier
transform are suitable for getting to the bottom of their solution. On the other
hand, no iteration method has been used to give approximate or exact solution to
the Mboctara equation. During our investigation in this work, we will be using the
homotopy decomposition method to solve the proposed equation with the general
form

∂xytu(x, y, t) +R(u(x, y, t)) + L(u(x, y, t)) = f(x, y, t). (1.2)

R is the non-linear operator and L the linear operator. The aim of this paper is to
modify existing iteration methods to analyze the above equation. It is important
to notice that all papers that have been published in which iteration methods were
used to find analytical solutions of nonlinear were in the form of

∂m
t u(x, y, t) +R(u(x, y, t)) + L(u(x, y, t)) = f(x, y, t), m ≥ 1. (1.3)

The above version is not as challenging as equation (1.2), because to solve the above,
one needs just to apply the inverse operator of ∂m

t and further apply the homotopy
method. We shall recall that the nonlinear equation under investigation here is
given as:

∂3
xytM(x, y, t) + ∂xM(x, y, t)∂yM(x, y, t)∂tM(x, y, t) +R(M(x, y, t)) = f(x, y, t).

(1.4)
R(M(x, y, t)) is a nonlinear or linear operator with mixed derivatives. The above
equation is perhaps amount the most difficult equations for which it is not easier to
find solution analytically; because it is not possible to use any integral transform
for instance: the Laplace, Fourier, Mellin and Sumudu transforms. On the other
hand, one cannot use in this case the Green function technique due to the form
of this equation. Not to mention that even some advance and powerful numerical
scheme cannot handle this equation easily. In the next section we shall present the
general methodology of the used method.

2. Methodology of the HDM for the nonlinear e-
quation

We shall consider the more general form of the nonlinear equation given as

∂n+m+l
xnymtl

M(x, y, t) = L(M(x, y, t)) +R(M(x, y, t)) + f(x, y, t). (2.1)

Here L is the linear operator with mixed derivatives and R nonlinear operator
with mixed derivatives, f is a known operator. The first think to do is to convert
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the above equation to an integral equation by applying on both sides the inverse
operator of ∂n+m+l

xnymtl
in order to obtain the following

M(x, y, t)− I(x, y, t)

=
1

Γ(n− 1)Γ(m− 1)Γ(l − 1)

∫ x

0

∫ y

0

∫ t

0

(t− w)l−1(x− j)n−1L(M(w, h, j))

+R(M(w, h, j)) + f(w, h, j)dwdhdj, (2.2)

I(x, y, t) =
n−1∑
w=0

m−1∑
h=0

l−1∑
j=0

fw,h,j(x, y, t)

w!h!j!
xwyhtj .

Here we shall recall that I(x, y, t) is the contribution of all initial conditions. The
next conventional step is to assume that, the solution of the above equation can be
obtained in series for in which an embedding parameter p is introduced, this idea
is proper to the Poincare series, and then we suppose that,

M(x, y, t) = lim
p−→1

∞∑
k=0

pkMk(x, y, t). (2.3)

With the primary intention of the decomposition method, the above expression is
directly replaced in equation (2.1) as follows

∞∑
k=0

pk−1Mk(x, y, t)− p−1I(x, y, t)

=
1

Γ(n− 1)Γ(m− 1)Γ(l − 1)

∫ x

0

∫ y

0

∫ t

0

(t− w)l−1(y − k)m−1(x− j)n−1

L

( ∞∑
k=0

pkMk(x, y, t)

)
+R

( ∞∑
k=0

pkMk(x, y, t)

)
+ f(w, h, j)dwdhdj.

(2.4)

The general idea at this stage is to put together expression with identical coefficient
of the embedding parameter p to thus obtain a set of integral equations that need to
be computed to obtain an approximate or exact solution to this class of equations.
It is perhaps important to notify that, during the process of comparison the bigger
challenge is to deal with the nonlinear part of the Mboctara equation, but to handle
this difficulty we borrow the idea of He’s polynomial that can be found in several
papers using the homotopy perturbation method.

2.1. Convergence analysis

One of the important parts of any iteration method is to prove the uniqueness and
the convergence of the method; we are going to show the analysis underpinning the
convergence and the uniqueness of the proposed method for the general solution for
p = 1.

Theorem 2.1. Assuming that X and Y are Banach spaces and V : X −→ Y is
contraction nonlinear mapping. If the progression engender by the three dimensional
homotopy decomposition method is regarded as

Mn(x, y, t) = V (Mn−1(x, y, t)) =
n−1∑
k=0

Mk(x, y, t), n = 1, 2, 3 · · · . (2.5)
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Then, the following statements hold

(a) ∥Mn(x, y, t)−M(x, y, t)∥ ≤ ρn∥I(x, y, t)−M(x, y, t)∥,with 0 < ρ < 1.

(b) For any n greater than 0, M(x, y, t) is always in the neighborhood of the exact
solution M(x, y, t).

(c) limn→∞ M(x, y, t) = M(x, y, t).

Proof. a) The proof of (a) shall be achieved via induction on the natural number
n. However, when n = 1, we have the following.

∥M1(x, y, t)−M(x, y, t)∥ = ∥V (M0(x, y, t))−M(x, y, t)∥.

However, by hypothesis, we have that V has a fixed point, which is the exact
solution. Because if M(x, y, t) is the exact solution, then,

M(x, y, t) = M∞(x, y, t) = V (

∞−1∑
k=0

Mk(x, y, t))

= V (
∞∑
k=0

Mk(x, y, t)) =
∞∑
k=0

Mk(x, y, t),

since ∞− 1 is the same as ∞, therefore we have that

M(x, y, t) = V (M(x, y, t)).

Then,

∥M1(x, y, t)−M(x, y, t)∥ = ∥V (M0(x, y, t))− V (M(x, y, t))∥.

Since V is a contractive nonlinear mapping, we shall have the following inequality

∥V (M0(x, y, t))− V (M(x, y, t))∥ = ∥V (Mn−1(x, y, t))−M(x, y, t)∥
= V (Mn−1(x, y, t))− V (M(x, y, t))∥.

Using the fact that V is a nonlinear contractive mapping we have the following

V (Mn−1(x, y, t))− V (M(x, y, t))∥ < ρ∥Mn−1(x, y, t))− V (M(x, y, t))∥.

Furthermore using the induction hypothesis, we arrive at

ρ∥Mn−1(x, y, t)− V (M(x, y, t))∥ < ρρn−1∥M0(x, y, t)−M(x, y, t)∥.

And the proof is completed.

b) Again we shall proof this by employing induction technique on m. Now for
m = 0, we have that

M0(x, y, t) = I(x, y, t) =
n−1∑
w=0

m−1∑
h=0

l−1∑
j=0

fw,h,j

w!h!j!
xwyhtj .

According to the idea of the homotopy decomposition method, the above is the
contribution of the initial conditions. More importantly, the above is nothing more
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than Taylor series of the exact solution of order nml, thus this leads us to the
situation that, we can find a positive real number r such that,

∥M0(x, y, t)−M(x, y, t)∥ < r.

This is true, because the contribution of the initial conditions is in the same neigh-
borhood of the exact solution. Then the property is verified for m = 0, let us
assume that, the property is also true for m − 1, that is we assume that, we can
find a positive real number r such that

∥Mm−1(x, y, t)−M(x, y, t)∥ < r.

We now want to show that the property is also true for m. In fact

∥Mm(x, y, t)−M(x, y, t)∥ = ∥V (Mm−1(x, y, t))− V (M(x, y, t))∥,

using the fact that V is a nonlinear contractive mapping leads us to obtain

∥V (Mm−1(x, y, t))− V (M(x, y, t))∥ < ρ∥Mm−1(x, y, t)−M(x, y, t)∥ < ρr,

since ρ < 1, we finally have

∥Mm(x, y, t)−M(x, y, t)∥ < r,

and this completes the proof.

c) The proof of (c) is directly achieved using the a) as follow

lim
n→∞

∥Mn(x, y, t)−M(x, y, t)∥ ≤ lim
n→∞

ρn∥I(x, y, t)−M(x, y, t)∥ = 0,

then,
limn→∞Mn(x, y, t) = M(x, y, t).

In order to show the efficiency and applicability of this method for handling the
nonlinear Mboctara equation, we shall present some applications in the next section.

3. Application

We shall in this section expose the effectiveness and the possible extension of itera-
tion method to handle this kind of nonlinear third order partial differential equation.
To achieve this, we shall present some example of equation together with their exact
solution: We shall start with the Example 3.1 Mboctara equation.

Example 3.1. We shall consider in this in this example the following Mboctara
equation

∂3
xytM(x, y, t)+∂xM(x, y, t)∂yM(x, y, t)∂tM(x, y, t)+M(x, y, t) = − exp(3x+3y−3t).

(3.1)
With initial conditions:

M(0, 0, 0) = 1, M(x, y, 0) = exp(x+ y), M(x, 0, t) = exp(x− t),

M(0, 0, t) = exp(t), M(0, y, 0) = exp(y), M(x, 0, 0) = exp(x).
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Applying the first step of the HDM to the above equation, we obtain the following
integrals

M0(x, y, t) =I(x, y, t), (3.2)

M1(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(∂αM0(α, β, γ)∂βM0(α, β, γ)∂γM0(α, β, γ)

+M0(α, β, γ)− exp(3α+ 3β − 3γ)dαdβdγ,

M2(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H2(M1,M0) +M1(α, β, γ)dαdβdγ,

M3(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H3(M2,M1,M0) +M2(α, β, γ)dαdβdγ,

M4(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H4(M3,M2,M1,M0) +M3(α, β, γ)dαdβdγ,

M5(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H5(M5,M3,M2,M1,M0) +M4(α, β, γ)dαdβdγ.

Therefore in general one will use the following iteration formula to compute the rest
of the components

M5(x, y, t) = −
∫ x

0

∫ y

0

∫ t

0

(H5(M5,M3,M2,M1,M0) +M4(α, β, γ)dαdβdγ. (3.3)

Where of course Hn(Mn−1, ,M3,M2,M1,M0) is the so called the He’s polynomial.
Now Replacing the initial conditions and also integrating the above equations, we
obtain the following solutions

M0(x, y, t) = I(x, y, t), (3.4)

M1(x, y, t) = −I(x, y, t) + 1,

M2(x, y, t) = xy(−t),

M3(x, y, t) =
(x2y2(−t)2)

8
,

M4(x, y, t) =
(x3y3(−t)3)

827
,

M5(x, y, t) =
(x4y4(−t)4)

(82743)
,

Mn(x, y, t) =
(xn−1ym−1(−t)l−1)

(n− 1)!(m− 1)!(l − 1)!
.

And the approximate solution of the nonlinear equation is given in series form as

∞∑
n=1

∞∑
m=1

∞∑
l=1

xn−1ym−1(−t)l−1

(n− 1)!(m− 1)!(l − 1)!
= exp(x+ y − t). (3.5)

It is very clear that, the above solution is the exact solution to the nonlinear Mboc-
tara (1.1). Since one example is not enough to show the efficiency of a method, we
shall present other examples more complicated.
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Example 3.2. We shall get to the bottom of the following equation by using the
extended iteration method.

∂3
xytM(x, y, t) + ∂xM(x, y, t)∂yM(x, y, t)∂tM(x, y, t)

−t2

xy
(∂tM(x, y, t))3

=[1− (xyt)2] cos(xyt)− 3xyt sin(xyt), (3.6)

M(0, 0, 0) = M(x, y, 0) = M(x, 0, t) = M(0, 0, t) = M(0, y, 0) = M(x, 0, 0) = 0.

Applying the first step of the HDM to the above equation, we obtain the following
integrals

M0(x, y, t) =0, (3.7)

M1(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(∂αM0(α, β, γ)∂βM0(α, β, γ)∂γM0(α, β, γ)

+
γ2

αβ
(∂γM0(α, β, γ))

3 − [1− (αβγ)2] cos(αβγ)

− 3αβγ sin(αβγ))dαdβdγ,

M2(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H2(M1,M0) +K2(M1,M0))dαdβdγ,

M3(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H3(M2,M1,M0) +K3(M2,M1,M0))dαdβdγ,

M4(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H4(M3,M2,M1,M0) +K4(M3,M2,M1,M0))dαdβdγ,

M5(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H5(M5,M3,M2,M1,M0)

+K5(M4,M3,M2,M1,M0))dαdβdγ.

Therefore in general one will use the following iteration formula to compute the rest
of the components

Mn(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(Hn(Mn−1, . . . ,M3,M2,M1,M0)

+Kn−1(Mn−2, . . . ,M3,M2,M1,M0))dαdβdγ.

(3.8)

It is perhaps important to accommodate readers that are not used to the iterations
method that the He’s polynomial used here are generally presented as Applying the
first step of the HDM to the above equation, we obtain the following integrals

Hn(Mn−1, . . . ,M3,M2,M1,M0) =
n−1∑
j=0

j∑
k=0

∂xMj∂yMj−k∂tMn−j−k, (3.9)

Kn(Mn−1, . . . ,M3,M2,M1,M0) =
t2

xy

n−1∑
j=0

j∑
k=0

∂tMj∂tMj−k∂tMn−j−k.

Replacing the initial conditions and also integrating the above equations, we obtain
the following solutions

M0(x, y, t) = 0, M1(x, y, t) = sin(xyt), (3.10)
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M2(x, y, t) = 0, M3(x, y, t) = 0,

M4(x, y, t) = 0, M5(x, y, t) = 0,

Mn(x, y, t) = 0.

And the approximate solution of the nonlinear equation is given in series form as

M(x, y, t) =

∞∑
k=0

Mk(x, y, t) = sin(xyt). (3.11)

It is very clear that, the above solution is the exact solution to the nonlinear Mboc-
tara (3.3). One can see that even with strong linearity this method still get to the
bottom of the exact solution of nonlinear Mboctara equation analytically.

Example 3.3. We shall get to the bottom of the following nonlinear equation by
using the extended iteration method.

∂3
(xyt)M(x, y, t) +

1

(xyt)2
∂xM(x, y, t)∂yM(x, y, t)∂tM(x, y, t)

− 1

yt
(cosh(xyt))2∂xM(x, y, t) = (1 + t2x2y2) cosh(xyt) + 3txy sinh(xyt).

(3.12)

With the initial conditions

M(0, 0, 0) = M(x, y, 0) = M(x, 0, t) = M(0, 0, t) = M(0, y, 0) = M(x, 0, 0) = 0.

Applying the first step of the HDM to the above equation, we obtain the following
integrals

M0(x, y, t) =0, (3.13)

M1(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(
1

(αβγ)2
∂αM0(α, β, γ)∂βM0(α, β, γ)∂γM0(α, β, γ)

− sinh(α, β, γ))2M0[1 + (αβγ)2] cosh(αβγ) + 3αβγ sinh(αβγ))dαdβdγ,

M2(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H2(M1,M0)− sinh(αβγ)2M1)dαdβdγ,

M3(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H3(M2,M1,M0)− sinh(αβγ)2M2)dαdβdγ,

M4(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H4(M3,M2,M1,M0)− sinh(αβγ)2M3)dαdβdγ,

M5(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(H5(M5,M3,M2,M1,M0)− sinh(αβγ)2M4)dαdβdγ.

Therefore in general one will use the following iteration formula to compute the rest
of the components

Mn(x, y, t) =−
∫ x

0

∫ y

0

∫ t

0

(Hn−1(Mn−1, . . . ,M3,M2,M1,M0)

− sinh(αβγ)2Mn−1)dαdβdγ,

(3.14)

the He’s polynomial used here are generally presented as

Hn(Mn−1, . . . ,M3,M2,M1,M0) =
1

(xyt)2

n−1∑
j=0

j∑
k=0

∂xMj∂yMj−k∂tMn−j−k. (3.15)
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Replacing the initial conditions and also integrating the above equations, we obtain
the following solutions

M0(x, y, t) = 0, M1(x, y, t) = sinh(xyt), (3.16)

M2(x, y, t) = 0, M3(x, y, t) = 0,

M4(x, y, t) = 0, M5(x, y, t) = 0,

Mn(x, y, t) = 0.

And the approximate solution of the nonlinear equation is given in series form as

M(x, y, t) =
∞∑
k=0

Mk(x, y, t) = sinh(xyt). (3.17)

The above solution is exact solution of (3.12).

Example 3.4. We shall get to the bottom of the following equation by using the
extended iteration method.

∂3
(xyt)M(x, y, t)− ∂xM(x, y, t)∂yM(x, y, t)∂tM(x, y, t) +M2(x, y, t)cosh(y)

= cosh(y)(cos(x) + 2t2 sin(x/2)2 sin(x)2 sinh(y)2),
(3.18)

with the initial conditions

M(0, 0, 0) = M(x, y, 0) = M(x, 0, t) = M(0, 0, t) = M(0, y, 0) = M(x, 0, 0) = 0.

Applying the first step of the HDM to the above equation, we obtain the following
integrals

M0(x, y, t) =0, (3.19)

M1(x, y, t) =

∫ x

0

∫ y

0

∫ t

0

(−∂αM0(α, β, γ)∂βM0(α, β, γ)∂γM0(α, β, γ)

+ cosh(β)M2
0 (α, β, γ) cosh(α) cosh(β))dαdβdγ,

M2(x, y, t) =

∫ x

0

∫ y

0

∫ t

0

(−(H2(M1,M0) + 2 cosh(β)M1M0))dαdβdγ,

M3(x, y, t) =

∫ x

0

∫ y

0

∫ t

0

(−H3(M2,M1,M0) + cosh(β)(2M2M0 +M2
1 ))dαdβdγ,

M4(x, y, t) =

∫ x

0

∫ y

0

∫ t

0

(−H4(M3,M2,M1,M0)

+ cosh(β)(2M2M1 + 2M3M0))dαdβdγ,

M5(x, y, t) =

∫ x

0

∫ y

0

∫ t

0

(−H5(M5,M3,M2,M1,M0)

+ cosh(β)(2M0M4 + 2M3M1 +M2
2 ))

2M4)dαdβdγ.

Therefore in general one will use the following iteration formula to compute the rest
of the components

M5(x, y, t) =

∫ x

0

∫ y

0

∫ t

0

(−Hn(Mn−1, . . . ,M3,M2,M1,M0)

+ cosh(β)
n−1∑
j=0

MjMn−j−1dαdβdγ.

(3.20)
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Replacing the initial conditions and also integrating the above equations, we obtain
the following solutions

M0(x, y, t) = 0, M1(x, y, t) = t sin(x) sinh(y), (3.21)

M2(x, y, t) = 0, M3(x, y, t) = 0,

M4(x, y, t) = 0, M5(x, y, t) = 0,

Mn(x, y, t) = 0.

And the approximate solution of the nonlinear equation is given in series form as

M(x, y, t) =

∞∑
k=0

Mk(x, y, t) = tsin(x) sinh(y). (3.22)

The above solution is exact solution of equation (3.18).

4. Conclusion

In the literature nowadays, lot of papers using iteration methods for solving lin-
ear, nonlinear partial and ordinary differential equations focused their attention on
partial differential equation where there is a single partial derivative. It is very
simple in this case to isolate the single partial derivative part and apply the inverse
operator in order to use the homotopy technique. For those using the variational it-
eration method, they obtain a one-dimensional Lagrange multiplier, which is easier
to handle. The class of equation we introduced in this work cannot be handled by
any integral transform for instance; Laplace, Mellin, Sumudu and Fourier transform
methods. Methods like Green function cannot be used in this case to get to the
bottom of the solution analytically. To get to the bottom of the solution of this
class of equation, we have extended the idea of homotopy decomposition method in
three dimensional spaces. Just to check the efficiency of this extended method, we
apply it in solving 4 examples, where we obtain the exact solutions at the second
iteration. With this examples we can concluded that, the three dimensional homo-
topy decomposition methods is efficient and easier to handle this class of equation
that other methods were unable to tackle.
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