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DYNAMIC PROPERTIES OF THE
OREGONATOR MODEL WITH DELAY∗

Xiang Wua, Chunrui Zhanga,†

Abstract Delayed feedbacks are quite common in many physical and biolog-
ical systems and in particular many physiological systems. Delay can cause
a stable system to become unstable and vice versa. One of the well-studied
non-biological chemical oscillators is the Belousov-Zhabotinsky(BZ) reaction.
This paper presents an investigation of stability and Hopf bifurcation of the
Oregonator model with delay. We analyze the stability of the equilibrium
by using linear stability method. When the eigenvalues of the characteristic
equation associated with the linear part are pure imaginary, we obtain the
corresponding delay value. We find that stability of the steady state changes
when the delay passes through the critical value. Then, we calculate the ex-
plicit formulae for determining the direction of the Hopf bifurcation and the
stability of these periodic solutions bifurcating from the steady states, by using
the normal form theory and the center manifold theorem. Finally, numerical
simulations results are given to support the theoretical predictions by using
Matlab and DDE-Biftool.
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1. Introduction

Feedback plays a very crucial role in many physical, chemical and biological sys-
tems. Dynamics of oscillators with delayed feedback is of considerable practical
and theoretical interest [5]. Among all the chemical reactions that show nonlinear
dynamics, the BelousovZhabotinsky (BZ) system has received the most extensive
attention since its discovery by Belousov in 1951 [1], and has remained a prototype
for nonlinear chemical systems. The improved Oregonator model described by the
following system (see [2]):

dX
dt = k3AY − k2XY + k5AX − 2k4X

2,
dY
dt = k3AY − k2XY + 1

2fk0BZ,
dZ
dt = 2k5AX − k0BZ,

(1)

here x = [HBrO2],y = [Br],[z = [Ce(IV)] and its dimensionless form is
εdxdt = qy − xy + x(1− x), (2)

δ dydt = −qy − xy + fz, (3)
dz
dt = x− z, (4)

(1b)
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where t is dimensionless time ε, δ, q, f are constants while f is an adjustable pa-
rameter [7].Because δ much less than ε , so the left side of equation (3) can be
considered equals 0, equation (3) can be reduced to y ≈ fz

q+x .

Brought y ≈ fz
q+x into equation (2) and equation (4) we can get 2-D simplified

model {
εdxdt = qfz

q+x −
fxz
q+x + x(1− x),

dz
dt = x− z.

(5)

From literature [8], we can know the topological equivalence of 3-D Oregonator
to its 2-D simplified model, which testifies that the investigation of 2-D model for
the 3-D Oregonator is valid. When electric current is applied, the catalyst Ce(IV )
is perturbed and other species are not affected [4]. Consequently, in modeling, the
perturbation term is introduced only in equation(4), which now becomes

dz

dt
= x− z + kz(t− τ). (6)

Then the purpose of this paper is to consider Oregonator model with a delay:{
εdxdt = qfz

q+x −
fxz
q+x + x(1− x),

dz
dt = x− z + kz(t− τ),

(7)

where ε=4× 10−2δ= 4× 10−4q = 8× 10−4, f ∈ (0, 1) is an adjustable parameter.
The remainder of this paper organized as follows. In the next section, we shall

consider the stability and the local Hopf bifurcation. In Section 3, based on the
normal form method and the center manifold reduction introduced by Hassard et
al.[3], we derive the formulae determining the direction, stability and the period of
the bifurcating periodic solution at the critical value of τ , a conclusion is drawn
in this section. To verify the theoretic analysis, numerical simulations are given in
section 4.

2. Stability and local Hopf bifurcations

Through out the paper, we assume that k < 1.Let (x∗, z∗) be an equilibrium point
of system (7). Then there is a unique x∗ > 0 ,z∗ > 0 satisfying{

qfz∗

q+z∗ −
fx∗z∗

q+z + x∗(1− x∗) = 0,

x∗ − z∗ + kz∗ = 0,

where {
x∗ =

1− f
1−k−q+

√
(1− f

1−k−q)
2
+4q(1+ f

1−k )

2 ,

z∗ = x∗

1−k .

Resulting in x∗

z∗ = 1− k > 0, we have k < 1. Let x = x− x∗, z = z − z∗. Then we
can rewrite (7) as the following equivalent system{

dx
dt = 1

ε ( qf(z+z∗)
q+(x+x∗) −

f(x+x∗)(z+z∗)
q+(x+x∗) + (x+ x∗)(1− x− x∗)),

dz
dt = x− z + kz(t− τ).

(8)
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The linearization of system (8) at (0, 0) is{
dx
dt = a1x+ a2z,
dz
dt = x− z + kz(t− τ).

(9)

Moreover, its corresponding characteristic equation is∣∣∣∣ λ−a1 −a2

−1 λ+ 1− ke−λτ
∣∣∣∣ = λ2 − b1λ− b2 − kλe−λτ + ka1e

−λτ = 0, (9)

where a1 = 1
ε ( −2qfz∗

(q+x∗)2
+ 1− 2x∗), a2 = 1

ε
qf−fx∗
q+x∗ , b1 = a1 − 1, b2 = a1 + a2.

In this section, we first study the distribution of roots of Eq.(10). We first
introduce the following important result, which was been proved by Ruan and Wei
[6] using Rouche theorem.
For τ = 0, the two roots of (10) have negative real parts if and only k + b1 <
0, ka1 − b2 > 0.
We impose the following condition:
(A1)ka1 > b2, k < −b1.

Lemma 2.1. Let τ = 0. Then if (A1) is satisfied, all the roots of Eq. (10) have
negative real parts, and hence (x∗, z∗) is asymptotically stable.

Next, we mainly focus on the case of τ > 0. If λ = iw0(w0 > 0) is a purely
imaginary root of Eq. (10) for τ > 0, then we have

−ω0
2 − b1iω0 − b2 − kiω0e

−iω0τ + ka1e
−iω0τ = 0.

Separating the real and imaginary parts, we obtain{
−ω0

2 − b2 − kω0 sinω0τ + ka1 cosω0τ = 0,
−b1ω0 − kω0 cosω0τ − ka1 sinω0τ = 0,

(11)

which implies
w4

0 + (2b2 + b21 − k2)w2
0 + b22 − k2a2

1 = 0. (12)

Let z = w2 and denote

u = 2b2 + b21 − k2, r = b22 − k2a2
1.

Then, Eq. (12) becomes
z2 + uz + r = 0. (13)

In order to seek a positive solution for Eq. (13), we impose the following condi-
tion:

(B1)r < 0.

Clearly, under the condition (B1), Eq. (13) has a unique positive root z = −u+
√
u2−4r

2 .
(B2)r > 0, u > 0.

Under the condition (B2), Eq. (13) has no positive root.
(B3)r > 0, u < 0.

Under the condition (B3), if there are real positive roots, then |k| is very large, f
infinitely close to one, does not match with the actual situation. Summarizing the
above discussions, we obtain the following:
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Lemma 2.2. For the polynomial Eq. (13), we have the following result.

(i)If r < 0 , then Eq. (13) has a unique positive root z = −u+
√
u2−4r

2 .
(ii)If r < 0 ,then Eq. (13) has no positive root.

Suppose that Eq. (13) has positive roots. Without loss of generality, we assume
that it has a positive root defined by z.Then, Eq. (12) has a positive root ω0,
moreover ω0 must satisfies the following equations.(

w2
0 + a1b2

k(w2 + a2
1)

)2

+

(
w3

0 + w0(a2
1 + a2)

kw2
0 + ka2

1

)2

= 1.

By (11), we have

cos(w0τ) =
w2

0 + a1b2
k(w2 + a2

1)
, sin(w0τ) = −w

3
0 + w0(a2

1 + a2)

kw2
0 + ka2

1

.

Thus, denoting

a = −w
3
0 + w0(a2

1 + a2)

kw2
0 + ka2

1

, b =
w2

0 + a1b2
k(w2 + a2

1)
,

τj =

{ 1
w0

(arccos b+ 2jπ), a ≥ 0,
1
w0

(2π − arccos b+ 2jπ), a < 0,

where j = 0, 1, 2, · · · ,then ±iw0 is a pair of purely imaginary roots of Eq. (10) with
τ = τj .
Note that when τ = 0, Eq. (10) becomes

λ2−(k + b1)λ+ ka1 − b2=0. (14)

Using Lemmas 2.1 and 2.2, we have the following results.

Lemma 2.3. For the exponential polynomial equation Eq. (10), we have
(i)If r > 0 and the condition (A1) is satisfied, then all roots with positive real

parts of Eq. (10) has the same sum as those of the polynomial Eq. (14) for all
r > 0.

(ii)If r < 0 then all roots with positive real parts of Eq. (10) has the same sum
as those of the polynomial Eq. (14) for τ ∈ [0, τ0).

Let λ(τ) = a(τ) + iw(τ) be the root of Eq.(7) near τ = τj satisfying a(τj) =
0, w(τj) = w0.Then, the following transversality condition holds.

Lemma 2.4. Suppose that r < 0, then
Re{λ(τj)}

dτ > 0.

Proof. Substituting λ(τ) into Eq.(10) and differentiating the resulting equation in
τ , we obtain

(2λ− b1λ+ τkλe−λτ − ke−λτ − τa1λe
−λτ )

dλ

dτ
= λka1e

−λτ − kλ2e−λτ .

Thus, (
dλ

dτ

)−1

=
2λ− b1λ+ τkλe−λτ − ke−λτ − τaλe−λτ

λkae−λτ − kλ2e−λτ

=
τ(k − a1)

k(a1 − λ)
− 1

λ(a1 − λ)
+

(2− b1)eλτ

k(a1 − λ)
,
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we can easily obtain(
d(Reλ(τj))

dτ

)−1

τ=τj

= Re

{
τ(k − a1)

k(a1 − λ)
− 1

λ(a1 − λ)
+

(2− b1)eλτ

k(a1 − λ)

}
τ=τj

=
1

w2
0 + a2

1

+
3w2

0 + 2b2 − a1w
2
0 + τk2a1 − τka2

1

k2(a2
1 + w2

0)
.

For a1 < 0, we have k < 0.In the previous part of this paper we know |k| can’t be
very large .As mentioned above, it can be obtained that

sign

[
1

w2
0 + a2

1

+
3w2

0 + 2b2 − a1w
2
0 + τk2a1 − τka2

1

k2(a2
1 + w2

0)

]
> 0.

For a1 < 0, we have 0 < k < 1− 2f and a1 < 2. It can be obtained that

sign

[
1

w2
0 + a2

1

+
3w2

0 + 2b2 − a1w
2
0 + τk2a1 − τka2

1

k2(a2
1 + w2

0)

]
> 0.

Therefore, the transversality condition holds and Hopf-bifurcation occurs at τ =
τj .
From Lemmas 2.4 and 2.5, we have the following:

Theorem 2.1. (1)If r > 0 and the condition (A1) is satisfied, then the zero solution
of system (7) is asymptotically stable for all τ > 0.
(2)If r < 0, then the zero solution of system (7) is asymptotically stable for τ ∈
(0, τ0), unstable for τ > τ0. The system (7) undergoes a Hopf bifurcation at the zero
solution when τ = τj(j = 0, 1, 2 · · · ).

Fig.1.The line k = 1, k + b1 = 0, ka1 − b2 = 0 and r = 0 divide the a1, k plane
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into five regions. D and E is the unstable region. A and C are the stable region.
B is the conditional stable region.

3. Direction and stability of the Hopf bifurcation

In the previous section, we have obtained some conditions to ensure that the system
(7) undergoes a single Hopf bifurcation at the origin (x∗, z∗) when τ = τ0 passes
through certain critical values. In this section, we shall study the direction, stability,
and the period of the bifurcating periodic solutions. The method we used is based
on the normal form method and the center manifold theory introduced by Hassard
et al. [3].

We first re-scale the time by t 7→ t/τ , to normalize the delay so that system (8)
can be written as{

dx
dt = τ

ε ( qf(z+z∗)
q+(x+x∗) −

f(x+x∗)(z+z∗)
q+(x+x∗) + (x+ x∗)(1− x− x∗)),

dz
dt = τx− τz + τkz(t− 1).

(15)

Letting τ=τ0 +a(a ∈ R), then a = 0 is Hopf bifurcation value of Eq. (15), Eq. (15)
can be rewritten as: {

dx
dt = (τ0 + a)(a1x+ a2z +M),
dz
dt = (τ0 + a)(x− z + kz(t− 1)),

where M = 1
ε

[
fz∗(q−x∗+1)

(q+x∗)2

]
x2 + 1

ε
−2qf

(q+x∗)xz.

Select the phase space C = C([−1, 0], R2). For any φ= (φ1, ϕ2)T ∈ C, setting

La(φ) = (τ0 + a)

(
a1 a2

1 −1

)(
φ1(0)
φ2(0)

)
+ (τ0 + a)

(
0 0
0 K

)(
φ1(−1)
φ2(−1)

)
= (τ0 + a)Aφ(0) + (τ0 + a)Bφ(−1),

and

f(a, φ)def(τ0 + a)

(
M
0

)
,

By the Riesz representation theorem, there exists a function η(θ, µ)(0 ≤ θ ≤
1),whose elements are of bounded variation such that

Laφ =

∫ 0

−1

dη(θ, a)φ(θ), φ ∈ C.

In fact, we choose

η(θ, α) = (τ + α)Aδ(θ) + (τ + α)Bδ(θ + 1),

where δ is dened by

δ(θ)=

{
1, θ=0,
0, θ 6= 0.

For φ ∈ C1([−1, 0], R2), define

A(a)φ =

{
dφ(θ)/dθ, θ ∈ [−1, 0),∫ 0

−1
dη(t, a)φ(t), θ = 0,
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and

R(a)φ =

{
0, θ ∈ [−1, 0),
f(a, φ), θ = 0.

Then, system (11) is equivalent to the following operator equation

·
ut = A(α)ut +R(α)ut, (16)

where ut = u(t+ θ)(θ ∈ ([−1, 0]).

For ψ ∈ C1([0, 1], (R2)∗), define

A∗ψ(s) =

{ −dψ(s)/ds, s ∈ (0, 1],∫ 0

−1
dηT (s, a)φ(−s), s = 0,

and a bilinear form

< ψ(s), φ(θ) >= ψ(0)φ(0)−
∫ 0

θ=1

∫ θ

ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0), then A(0) and A∗ are adjoint operators. Setting q(θ) and
q∗(s) is the eigenvector of A(0) and A∗ corresponding to iτ0w0 and −iτ0w0.By
direct calculation we have

q(θ) = ( a2
iw0+a1

, 1)T eiw0τ0θ,

q∗(s) = D( 1
iw0+a1

, 1)eiw0τ0s.

where

D = − w0
2 + a1

2

a2(2ke−iw0τ0 − 2keiw0τ0)
.

Then 〈q∗, q〉 = 1 and 〈q∗, q〉 = 0.
In the following, we follow the ideas in Hassard et al.[14] and by using the same

notations as there to compute the coordinates describing the center manifold C0

at a = 0. Let ut be the solution of (16) when a = 0. Dene z(t) =< q∗, ut >,
W (t, θ) = ut(θ)− 2Re{z(t)q(θ)}.

On the center manifold C0 we have W (t, θ) = W (z(t), z̄(t), θ), where

W (z, z̄, θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z2

2
+W30

z3

6
+ · · · ,

z and z are local coordinates for center manifold C0 in the direction of q∗ and
q∗. Note that W is real if ut is real .We only consider real solutions. For solution
ut ∈ C0 of (16), since a = 0, we have

z′(t) = iw0z + 〈q∗(θ), F̃ (W + 2Re {z(t)q(θ)})〉
def
== iw0 + q̄∗(0)F̃0(z, z̄).

We rewrite this equation as

z′(t) = iw0z(t) + g(z, z̄), (17)

with
g(z, z̄) = q̄∗(0)F̃ (W (z, z̄, 0) + 2Re{z(t)q(0)})
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= g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ .... (18)

It follows from (16) and (17) that

W ′ = u′t − z′q − z̄′q̄ =

{
AW − 2Re{q̄ ∗ (0)F̃0q(θ)}, θ ∈ [−1, 0),

AW − 2Re{q̄ ∗ (0)F̃0q(θ)}+ F̃0 , θ = 0.

Comparing of coefficients we have:

g20 = 2q1
∗(0) · 1

ε
fz∗(q−x∗+1)

(q+x∗)2
,

g11 = 2q1
∗(0) · 1

ε
−2qf

(q+x∗) ,

g02 = 0,

g21 = 2q1
∗(0) ∗ ( 1

ε
fz∗(q−x∗+1)

(q+x∗)2
( 2a1a2
a12+w2

0
w1

11(0) + 2a1a2
a12+w2

0
w1

20(0))

+ 1
ε
−2qf

(q+x∗) ( 1
2w

1
20 + 1

2
2a1a2
a12+w2

0
w2

20(0) + 2a1a2
a12+w2

0
w2

11(0)),

where
q1
∗(0)= 1

a1+w0
,

W20(θ) = − g20
iω0
q(0)eiω0θ − ḡ20

3iω0
q̄(0)e−iω0θ + E1e

2iω0θ,

W11(θ) =
g11
iω0
q(0)eiω0θ − ḡ11

iω0
q̄(0)e−iω0θ + E2.

Moreover E1 and E2 satisfies the following equations, respectively(
2iw0 − a1 −a2

−1 2iw0 + 1− ke−2iw0

)
E1 =

(
1
ε

fz∗(q−x∗+1)

(q+x∗)2

0

)
,(

−a1 −a2

−1 1− k

)
E2 =

(
1
ε
−2qf

(q+x∗)

0

)
.

Then we can compute the following quantities:

c1(0) = i
2ω0

(g20g11 − 2|g11|2 − 1
3 |g02|2) +

g21
2 ,

v2 = − Rec1(0)
Reλ′(τ0) ,

T2 = − Im{c1(0)}+µ2Im{λ
′
(τ0)}

ω0
,

β2 = 2Rec1(0).

(18)

Hence we have the following theorem by the result of Hassard et al.[3].

Theorem 3.1. In (19), the sign of v2 determined the direction of Hopf bifurcation:
if v2 > 0(v2 < 0), then the Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solution exist for τ > τ0(τ < τ0). β2 determined the stability of
the bifurcating periodic solution: the bifurcating periodic solution is stable (unstable)
if β2 < 0(β2 > 0),and T2 determines the period of the bifurcating periodic solution:
the period increase (decrease) if T2 > 0(T2 < 0).

4. Numerical simulations

In order to check our computation for Theorem 3.1, we perform some numerical
simulations. We choose parameters as follows: q = 8× 10−4, f = 2/3, k = −2.5, for
the above parameters, we can calculate τ0 ≈ 1.67.
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Fig.2. For the following parameter values,q = 8× 10−4, f = 2/3, k = −2.5, and
τ = 1.5 < τ0, system solution curve and X-Y Phase diagram.
Figure 2 shows that the equilibrium point of the system is asymptotically stable.

Fig.3. For the following parameter values, q = 8× 10−4, f = 2/3, k = −2.5, and
τ = τ = 1.7 > τ0, system solution curve and X-Y Phase diagram.
Figure 3 shows there exists a periodic orbit which is orbitally asymptotically stable
when τ > τ0 and is close to τ0.

5. Conclusions

For an Oregonator model with delay, an important issue is how delays change the
stability of Oregonator model states, steady or oscillatory, causing further oscil-
lations or significantly altering existing ones and hence inducing delay-controlled
periodic behavior. In this paper, experimental and numerical investigations on the
effect of electrical feedback in the oscillating BelousovZhabotinsky reaction are s-
tudied. By studying the distribution of the roots in the characteristic equations
associated with their corresponding linearizations, we have provided the bifurcation
sets in the appropriate parameter plane. From the bifurcation sets, the conclusion
can be drawn that in some regions (region of asymptotic stability and unstable
region). However, in the region of conditional stability, the stability changes when
the sum of delays reaches a certain critical value. In addition, using the normal
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form theory and center manifold reduction, the stability and bifurcating direction
of periodic solutions are determined.

From a chemical viewpoint, both means that time delay could cause a stable
equilibrium to become unstable and cause the properties in an Oregonator model
to fluctuate: if τ < τ0, the density of various elements reach an equilibrium. If
τ increases and crosses the value τ0, then this equilibrium becomes unstable: the
density of various elements oscillates around the unstable equilibrium.

Appendix

In this Appendix, we employ the algorithm of DDE-Biftool to analysis the model.
Obtained directly from the solution of Eq. (12). We have a positive root

ω0=

√√√√−(2b2 + b21 − k2) +

√
(2b2 + b21 − k2)

2 − 4(b22 − k2a2
1)

2
.

We choose a set of parameters as follows: q = 8 × 10−4, f = 2/3, k = −2, we have
τ0 ≈ 2.36 Select the initial amount of delay τ = 3.

stst.parameter= [0.0008 2/3 -2 0.04 3]

stst =
kind: ’stst’

parameter: [8.0000e− 0040.6667− 20.04003]
x: [2x1double]

stability: [ ]
First, draw the picture of the root of the characteristic equation in the equilib-

rium point. In figure 4, we can see that near the imaginary axis there are at least
a pair of characteristic roots is real.

Fig4

By adjusting the parameter values, correcting the characteristic roots to find the
Hopf bifurcation values.
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Fig5

By correction, we find the Hopf bifurcation poin τ = 2.3640
branch1.point(9)

stst =
kind: ’stst’

parameter: [8.0000e− 0040.6667− 20.04003]
x: [2x1double]

stability: [ ]
When τ = 2.3640 there is a pair of pure imaginary roots appear in Figure 5.

Fig6

We can see τ ≈ τ0, so we verify the previous theoretical.
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