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LONG TIME BEHAVIOR OF AN ALLEN-CAHN
TYPE EQUATION WITH A SINGULAR

POTENTIAL AND DYNAMIC BOUNDARY
CONDITIONS
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Abstract The aim of this paper is to study the well-posedness and the long
time behavior of solutions for an equation of Allen-Cahn type owing to proper
approximations of the singular potential and a suitable definition of solutions.
We also prove the existence of the finite dimensional global attractor as well
as exponential attractors.
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1. Introduction

In this article we are interested in the study of the following initial and boundary
value problem, considered in a smooth and bounded domain Ω ⊂ R3 with boundary
∂Ω = Γ: 

∂tϕ = ∆µ− µ = −(−∆+ I)µ = −Aµ, ∂nµ|∂Ω = 0,
µ = −∆ϕ+ f(ϕ)− λϕ, ϕ|t=0 = ϕ0,
∂tψ = ∆Γψ − g(ψ)− ∂nϕ, x ∈ ∂Ω, ψ|t=0 = ψ0,
ϕ|∂Ω = ψ,

(1.1)

where λ ∈ R, ∆Γ is the Laplace-Beltrami operator on the boundary ∂Ω, f and g
are given nonlinear interaction functions and λ is some given positive constant. In
particular, f is the derivative of a double-well potential whose wells correspond to
the phases of the material. A thermodynamically relevant function f is the following
logarithmic (singular) function:

f(s) = −2κ0s+ κ1 ln
1 + s

1− s
, s ∈ (−1, 1), κ0 > κ1 > 0.

The boundary condition will be interpreted as an additional second-order parabolic
equation on the boundary ∂Ω.

Equation (1.1) may be viewed as a combination of the well-known Cahn-Hilliard
equation

∂tu = −∆(∆u+ f(u)), u(0, x) = u0(x),
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and of the Allen-Cahn equation

∂tu = ∆u+ f(u), u(0, x) = u0(x).

This equation is associated with multiple microscopic mechanisms such as surface
diffusion and absorption/desorption and was recently derived and studied in Karali
& Katsoulakis [6], Katsoulakis & Vlachos [7], Israel [9], Hildebrand & Mikhailov
[10].

This paper is organized as follows. In Section 2, we introduce regularized prob-
lems in which the singular nonlinearity is approximated by regular functions and we
derive uniform a priori estimates on the corresponding solutions. In Section 3, we
formulate the variational formulation of (2.1), we verify the existence and unique-
ness of a solution and we study the further regularity of the solutions. In Section
4, we give sufficient conditions which ensure that solutions are separated from the
singularities of f and that a variational solution coincides with a solution in the
usual (distribution) sense. Finally, we study in Section 5 the asymptotic behavior
of the system and we prove the existence of finite-dimensional (both global and
exponential) attractors.

2. Approximations and uniform a priori estimates

We set f̃(ϕ) := f(ϕ)− λϕ and rewrite problem (1.1) in the form:
∂tϕ = ∆µ− µ = −(−∆+ I)µ = −Aµ, ∂nµ|∂Ω = 0,

µ = −∆ϕ+ f̃(ϕ), ϕ|t=0 = ϕ0,
∂tψ = ∆Γψ − g(ψ)− ∂nϕ, x ∈ ∂Ω, ψ|t=0 = ψ0,
ϕ|∂Ω = ψ,

(2.1)

where the singular function f satisfies:
f ∈ C2((−1, 1)),
f(0) = 0, lim

s→±∞
f(s) = ±∞,

f ′(s) ≥ 0, lim
s→±∞

f ′(s) = +∞,

f ′′(s) sgn s ≥ 0.

(2.2)

As a consequence, the following properties hold for f̃ :

f̃ ′(s) ≥ −λ and − c̃ ≤ F̃ (s) ≤ f̃(s)s+ C̃, ∀s ∈ (−1, 1), (2.3)

where F̃ (s) =
∫ s

0
f̃(r)dr and c̃, C̃ are strictly positive constants.

The nonlinear function g ∈ C2([−1, 1]) can be extended, without loss of gener-
ality, to the whole real line by writing:

g(s) = s+ g0(s), ∀s ∈ R, where ∥g0∥C2(R) := C0 < +∞. (2.4)

We set, for r ≥ 1,

Hr(Ω)⊗Hr(Γ) := {v ∈ Hr(Ω), v|Γ ∈ Hr(Γ)} ,

which we endow with the norm:

∥v∥2Hr(Ω)⊗Hr(Γ) = ∥v∥2Hr(Ω) + ∥v∥2Hr(Γ).
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Alternatively, the functions in Hr(Ω) ⊗Hr(Γ) can be viewed as pairs of functions
(v, v|Γ).

We introduce a family of regular approximating functions: given any N ∈ IN,
we set:

fN (s) =

 f(−1 + 1/N) + f ′(−1 + 1/N)(s+ 1− 1/N), −1 < s < −1 + 1/N,
f(s), |s| ≤ 1− 1/N,
f(1− 1/N) + f ′(1− 1/N)(s− 1 + 1/N), 1− 1/N < s < −1.

(2.5)
Then, we denote FN the primitive FN (s) =

∫ s

0
fN (s)ds and having set f̃N (s) =

fN (s)−λs, we define F̃N analogously, with f̃N instead of fN .We recall the following
properties (for more details, see Miranville & Zelik [12]), namely, there exist α > 0,
c > 0 and C > 0 such that:

f̃N (s)s ≥ α/2|fN (s)| − c, (2.6)

and
1/2FN (s)− C ≤ F̃N (s) ≤ 2FN (s) + C, (2.7)

∀s ∈ R and for N ≥ N0(λ) large enough, where the constant C only depends on λ.

We then consider the approximate problems:
∂tϕ = ∆µ− µ = −(−∆+ I)µ = −Aµ, ∂nµ|∂Ω = 0,

µ = −∆ϕ+ f̃N (ϕ), ϕ|t=0 = ϕ0,
∂tψ = ∆Γψ − g(ψ)− ∂nϕ, x ∈ ∂Ω, ψ|t=0 = ψ0,
ϕ|∂Ω = ψ.

(2.8)

It is convenient to rewrite problem (2.8) in an equivalent form by using the inverse
of A := (−∆ + I) (endowed with Neumann boundary conditions). Applying A−1

to both side of (2.8), we obtain: A−1∂tϕ−∆ϕ+ f̃N (ϕ) = 0, x ∈ Ω, ϕ|t=0 = ϕ0,
∂tψ = ∆Γψ − g(ψ)− ∂nϕ, x ∈ ∂Ω, ψ|t=0 = ψ0,
ϕ|∂Ω = ψ.

(2.9)

We start with the usual energy equality.

Lemma 2.1. Let the above assumptions hold and let ϕ be a sufficiently regular
solution of (2.9). Then, the following identities hold:

∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ) +

∫ t

0

(
∥ϕ(s)∥2H1(Ω) + ∥ψ(s)∥2H1(Γ) + (F̃N (ϕ(s)), 1)Ω

)
ds

≤ C
(
1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)

)
,

(2.10)

∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ) +

∫ t

0

e−ν(t−s)
(
∥ϕ(s)∥2H1(Ω) + ∥ψ(s)∥2H1(Γ)

)
ds

+

∫ t

0

e−ν(t−s)∥fN (ϕ(s)∥L1(Ω)ds ≤ C
(
1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)

)
e−νt,

(2.11)
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and ∫ t+1

t

(∥ϕ(s)∥2H1(Ω) + ∥ψ(s)∥2H1(Γ) + α∥fN (ϕ(s)∥L1(Ω))ds

≤ C
(
1 + (∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ))e

−νt
)
,

(2.12)

for some positive constants C and ν which are independent of t.

Proof. Multiplying (2.9) by ϕ and using the fact that:

∥ϕ∥H1(Ω) ≤ C(∥∇ϕ∥L2(Ω) + ∥ψ∥H1(Γ)), (2.13)

we find:

1

2

d

dt

(
∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ)

)
+ ∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ)

+ (f̃N (ϕ(t)), ϕ(t))Ω + (g0(ψ(t)), ψ(t))Γ ≤ 0.

(2.14)

Using (2.3), the fact that g0 is globally bounded and that ∥ψ(t)∥L∞(Γ) ≤ 1, we
obtain:

d

dt

(
∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ)

)
+ ∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ)

+ (F̃N (ϕ(t)), 1)Ω ≤ C,

(2.15)

for some positive constant C. Integrating (2.15) with respect to t, we deduce:

∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ) +

∫ t

0

(
∥ϕ(s)∥2H1(Ω) + ∥ψ(s)∥2H1(Γ) + (F̃N (ϕ(s)), 1)Ω

)
ds

≤C
(
1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)

)
,

(2.16)

for some constant C.
Now, using (2.6) and the fact that g0 is globally bounded, (2.14) gives:

1

2

d

dt

(
∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ)

)
+ ∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ)

+ α/2∥fN (ϕ(t)∥L1(Ω) ≤ C,
(2.17)

for some positive constants α and C. Hence, for ν > 0 small enough, we obtain:

d

dt
(∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ)) + ν

(
∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ)

)
+ ν(∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + ∥fN (ϕ(t)∥L1(Ω)) ≤ C.

(2.18)

Applying Gronwall’s lemma, we deduce estimate (2.11). Finally, integrating (2.17)
with respect to t over (t, t+ 1) and using (2.11), we obtain:∫ t+1

t

(∥ϕ(s)∥2H1(Ω) + ∥ψ(s)∥2H1(Γ) + α∥fN (ϕ(s)∥L1(Ω))ds

≤ C(1 + ∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ))

≤ C
(
1 + (∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ))e

−νt
)
.

(2.19)
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Lemma 2.2. Let the assumptions of Lemma 2.1 hold. Then, the following identity
holds:

∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ω

+

∫ t

0

(∥∂tϕ(s)∥2H−1(Ω) + ∥∂tψ(s)∥2L2(Γ))ds

≤ C
(
1 + ∥ϕ(0)∥2H1(Ω) + ∥ψ(0)∥2H1(Γ) + 2(F̃N (ϕ(0)), 1)Ω

)
,

(2.20)

where the constant C is independent of t and of the initial data.

Proof. Multiplying the first equation of (2.9) by ∂tϕ and integrating over Ω,
we obtain:

1

2

d

dt

(
∥∇ϕ(t)∥2L2(Ω) + ∥∇Γψ(t)∥2L2(Γ) + ∥ψ(t)∥2L2(Γ)

)
+ ∥∂tϕ(t)∥2H−1(Ω)

+ ∥∂tψ(t)∥2L2(Γ) + (f̃N (ϕ(t)), ∂tϕ(t))Ω + (g0(ψ(t)), ∂tψ(t))Γ

=
1

2

d

dt
(∥∇ϕ(t)∥2L2(Ω) + ∥∇Γψ(t)∥2L2(Γ) + ∥ψ(t)∥2L2(Γ) + 2(F̃N (ϕ(t)), 1)Ω

+ 2(G0(ψ(t)), 1)Γ) + ∥∂tϕ(t)∥2H−1(Ω) + ∥∂tψ(t)∥2L2(Γ)

=0,

(2.21)

where G0(t) =

∫ t

0

g0(s)ds. Using (2.13), we find:

1

2

d

dt

(
∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ω + 2(G0(ψ(t)), 1)Γ

)
+ ∥∂tϕ(s)∥2H−1(Ω) + ∥∂tψ(s)∥2L2(Γ) = 0.

(2.22)

Integrating (2.22) with respect of t, taking into account that g0 is globally bounded,
we deduce (2.20).

Lemma 2.3. Let the assumptions of Lemma 2.1 hold, ϕ be a sufficiently regular
solution of (2.9) and N be large enough. Then, for t > 0, the following smoothing
property holds:

t
(
∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ω

)
+

∫ t

0

s(∥∂tϕ(s)∥2H−1(Ω) + ∥∂tψ(s)∥2L2(Γ))ds

≤ C
(
1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)

)
,

(2.23)

where the constant C is independent of N .

Proof. Multiplying (2.22) by t, we obtain:

1

2

d

dt
(t(∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ω + 2(G0(ψ(t)), 1)Γ))

+ t(∥∂tϕ(t)∥2H−1(Ω) + ∥∂tψ(t)∥2L2(Γ))

=
1

2
(∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ω + 2(G0(ψ(t)), 1)Γ).

(2.24)
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Integrating (2.24) with respect of t from 0 to t, we have:

t(∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ω + 2(G0(ψ(t)), 1)Γ

+ 2

∫ t

0

s(∥∂tϕ(s)∥2H−1(Ω) + ∥∂tψ(s)∥2L2(Γ))ds

≤
∫ t

0

(∥ϕ(s)∥2H1(Ω) + ∥ψ(s)∥2H1(Γ) + 2(F̃N (ϕ(s)), 1)Ω + 2(G0(ψ(s)), 1)Γ).

(2.25)

Using (2.7), (2.10) and that g0 is bounded globally, we deduce:

t
(
∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ω

)
+

∫ t

0

s(∥∂tϕ(s)∥2H−1(Ω) + ∥∂tψ(s)∥2L2(Γ))ds

≤ C
(
1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)

)
,

(2.26)

and the proof is complete.

Lemma 2.4. Let the assumptions of Lemma 2.1 hold. Then, we have, for all t ≥ 1
and N large enough, the following property:

∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ωds

+

∫ t

1

(∥∂tϕ(s)∥2H−1(Ω) + ∥∂tψ(s)∥2L2(Γ))ds

≤ C(1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)).

(2.27)

Moreover, for any t > 0 and N large enough, the following inequality holds:

∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ω

≤ C
t+ 1

t
(1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)).

(2.28)

Proof. Integrating (2.22) with respect to t from 1 to t, we obtain:

∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Γ) + 2(F̃N (ϕ(t)), 1)Ω

+

∫ t

1

(∥∂tϕ(s)∥2H−1(Ω) + ∥∂tψ(s)∥2L2(Γ))ds

≤ C
(
1 + ∥ϕ(1)∥2H1(Ω) + ∥ψ(1)∥2H1(Γ) + 2(F̃N (ϕ(1)), 1)Ω

)
.

(2.29)

From (2.23) and for t = 1, we find:(
∥ϕ(1)∥2H1(Ω) + ∥ψ(1)∥2H1(Γ) + 2(F̃N (ϕ(1)), 1)Ω

)
+

∫ 1

0

s(∥∂tϕ(s)∥2H−1(Ω) + ∥∂tψ(s)∥2L2(Γ))ds

≤ C
(
1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)

)
.

(2.30)

Estimates (2.29) and (2.30) allow us to find (2.27). Estimate (2.28) follows imme-
diately from (2.23) and (2.27).
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We will now give some additional regularity results on ∂tϕ(t). To prove this, we
differentiate (2.8) and set (u(t), v(t), w(t)) := ∂t(ϕ(t), µ(t), ψ(t)). Then we have:

∂tu = ∆v − v = −(−∆+ I)v = −Av, ∂nv|Γ = 0,

v = −∆u+ f̃ ′N (ϕ)u,
∂tw = ∆Γw − g′(ψ)w − ∂nw, x ∈ Γ,
u|Γ = w.

(2.31)

Lemma 2.5. Let the assumptions of Lemma 2.1 hold. Then, the following estimate
is valid for all t > 0:

∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ) +

∫ t+1

t

(∥u(s)∥2H1(Ω) + ∥w(s)∥2H1(Γ))ds

≤ c(∥u(0)∥2H−1(Ω) + ∥w(0)∥2L2(Γ))e
−νt + c,

(2.32)

for some positive constants c and ν independent of N . Moreover, for t > 0, we have
the smoothing property:

∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ) ≤ c
t2 + 1

t2
(1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)). (2.33)

Proof. Multiplying the first equation of (2.31) by A−1u, the second equation by
u and the third one by w and taking the sum of the equations that we obtain, we
have the following identity:

1

2

d

dt

(
∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)

)
+ ∥∇u(t)∥2L2(Ω) + ∥∇Γw(t)∥2L2(Γ)

+ ∥w(t)∥2L2(Γ) + (f̃ ′N (ϕ(t))u(t), u(t))Ω + (g′0(ψ(t))w(t), w(t))Γ = 0.
(2.34)

Using (2.3), (2.13) and that g′0 is globally bounded, we find:

d

dt

(
∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)

)
+ ∥u(t)∥2H1(Ω) + ∥w(t)∥2H1(Γ)

≤ c(∥u(t)∥2L2(Ω) + ∥w(t)∥2L2(Γ)).
(2.35)

Using the interpolation inequality ∥u∥2L2(Ω) ≤ c∥u∥H1(Ω)∥u∥H−1(Ω), we find:

d

dt

(
∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)

)
+ ∥u(t)∥2H1(Ω) + ∥w(t)∥2H1(Γ)

≤ c(∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)).
(2.36)

Provided that ν > 0 is small enough, the following estimate holds:

d

dt
(∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)) + ν(∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ))

+ ν(∥u(t)∥2H1(Ω) + ∥w(t)∥2H1(Γ))

≤ c(∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)).

(2.37)

We consider the case t ≥ 1. Applying Gronwall’s inequality and using estimate
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(2.27), we obtain:

∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)

≤(∥u(1)∥2H−1(Ω) + ∥w(1)∥2L2(Γ))e
−ν(t−1)

+ c

∫ t

1

e−ν(t−s)(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

≤(∥u(1)∥2H−1(Ω) + ∥w(1)∥2L2(Γ))e
−ν(t−1)

+ c

∫ t

1

(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

≤(∥u(1)∥2H−1(Ω) + ∥w(1)∥2L2(Γ))e
−ν(t−1)

+ c(1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)).

(2.38)

Integrating (2.37) over (t, t+ 1), t ≥ 1, we find:∫ t+1

t

(∥u(s)∥2H1(Ω) + ∥w(s)∥2H1(Γ))ds

≤∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ) + c

∫ t+1

t

(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

≤(∥u(1)∥2H−1(Ω) + ∥w(1)∥2L2(Γ))e
−ν(t−1) + c(1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)).

(2.39)

We have:

t2(∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ))

= 2

∫ t

0

s(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

+

∫ t

0

s2∂t(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds.

(2.40)

Taking into account (2.26) and (2.36), we obtain for t ∈ (0, 1]:

t2(∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ))

≤ 2

∫ t

0

s(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

+ c

∫ t

0

s(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

≤ (2 + c)

∫ t

0

s(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

≤ c(1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)),

(2.41)

for some positive constant c. For t = 1, estimate (2.41) gives:

∥u(1)∥2H−1(Ω) + ∥w(1)∥2L2(Γ) ≤ c(1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)), (2.42)

then, replacing this estimate in (2.38) and (2.39), we deduce:

∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ) +

∫ t+1

t

(∥u(s)∥2H1(Ω) + ∥w(s)∥2H1(Γ))ds

≤ c+ c(∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ))e
−νt,

(2.43)
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for all t ≥ 1. From estimates (2.41) and (2.43), we deduce:

∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)

≤ c(1 +
1

t2
)(1 + ∥ϕ(0)∥2H−1(Ω) + ∥ψ(0)∥2L2(Γ)), ∀t > 0.

(2.44)

To show estimate (2.32) for t ∈ (0, 1], we consider (2.37), in particular,

d

dt
(∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)) ≤ c(∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)). (2.45)

Applying Gronwall’s inequality to (2.45), we find:

∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ)

≤ cect(∥u(0)∥2H−1(Ω) + ∥w(0)∥2L2(Γ))

≤ c′e−νt(∥u(0)∥2H−1(Ω) + ∥w(0)∥2L2(Γ)), t ∈ (0, 1].

(2.46)

Integrating (2.37) over (t, t+ 1), t ∈ (0, 1], using (2.43) and (2.46), we obtain:∫ t+1

t

(∥u(s)∥2H1(Ω) + ∥w(s)∥2H1(Γ))ds

≤ ∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ) + c

∫ t+1

t

(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

≤ ∥u(t)∥2H−1(Ω) + ∥w(t)∥2L2(Γ) + c

∫ 1

t

(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

+ c

∫ t+1

1

(∥u(s)∥2H−1(Ω) + ∥w(s)∥2L2(Γ))ds

≤ c+ c(∥u(0)∥2H−1(Ω) + ∥w(0)∥2L2(Γ))e
−νt.

(2.47)

Hence, the proof is complete.

Theorem 2.1. Let the nonlinearities f and g satisfy (2.2) and (2.4) respectively
and set Ωδ := {x ∈ Ω, d(x,Γ) > δ} . Denote by n = n(x) some smooth extension of
the unit normal vector field at the boundary inside the domain Ω. Let also Dτϕ :=
∇xϕ − (∂nϕ)n be the tangential part of the gradient ∇xϕ. Then, for every δ > 0,
the following estimate is valid:

∥ϕ(t)∥2Cα(Ω) + ∥ϕ(t)∥2H2(Ωδ)
+ ∥ψ(t)∥2H2(Γ) + ∥ϕ(t)∥2H1(Ω) + ∥∂tϕ(t)∥2H−1(Ω)

+ ∥∂tψ(t)∥2L2(Γ) + ∥∇Dτϕ(t)∥2L2(Ω) + ∥fN (ϕ(t))∥L1(Ω)

+

∫ t+1

t

(∥∂tϕ(s)∥2H1(Ω) + ∥∂tψ(s)∥2H1(Γ))ds

≤ C(1 + ∥ϕ(0)∥2H1(Ω) + ∥ψ(0)∥2H1(Γ) + ∥∂tϕ(0)∥2H−1(Ω) + ∥∂tψ(0)∥2L2(Γ))e
−γt,

(2.48)

where the positive constants α(α > 1/4), γ and C are independent of N.

Proof. We consider the nonlinear elliptic problem:{
∆ϕ(t)− fN (ϕ(t))− ϕ(t) = h1(t) := −ϕ(t) + λϕ(t) +A−1∂tϕ(t), x ∈ Ω
∆Γψ(t)− ψ(t)− ∂nϕ(t) = h2(t) := g0(ψ(t)) + ∂tψ(t), x ∈ Γ,

(2.49)
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for every fixed t. Note here that the estimates derived above yield the following
control of the right-hand side of (2.49):

∥h1(t)∥2L2(Ω) + ∥h2(t)∥2L2(Γ) ≤ C(1 + ∥∂tϕ(t)∥2H−1(Ω) + ∥∂tψ(t)∥2L2(Γ)), (2.50)

where C is a positive constant that is independent of N. Due to estimate (2.33), we
find that h1 ∈ L2(Ω) and h2 ∈ L2(Γ). Using estimates (2.20), (2.32) and (3.38), we
obtain:

∥ϕ(t)∥2H1(Ω) + ∥∂tϕ(t)∥2H−1(Ω) + ∥∂tψ(t)∥2L2(Γ) + ∥fN (ϕ(t))∥L1(Ω)

+

∫ t+1

t

(∥∂tϕ(s)∥2H1(Ω) + ∥∂tψ(s)∥2H1(Γ))ds

≤ C(1 + ∥ϕ(0)∥2H1(Ω) + ∥ψ(0)∥2H1(Γ) + ∥∂tϕ(0)∥2H−1(Ω) + ∥∂tψ(0)∥2L2(Γ))e
−γt.

(2.51)

In order to prove the following estimate:

∥ϕ(t)∥2H2(Ωδ)
≤ C(1 + ∥h1∥2L2(Ω) + ∥h2∥2L2(Γ)), (2.52)

where C = Cϵ depends on ϵ > 0. We consider a smooth nonnegative cut-off function
θ such that θ(x) = 1 if d(x,Γ) ≥ δ and θ(x) = 0 if d(x,Γ) ≤ δ/2 which satisfies, in
addition, the inequality:

|∇xθ(x)| ≤ Cθ1/2(x).

Then, we multiply equation (2.49) by
∑3

i=3 ∂x1(θ(x)∂xiu), and we integrate by
parts. Using estimate (2.51) and the fact that f ′ ≥ 0, we obtain estimate (2.52).
In order to prove:

∥∇xDτϕ∥2L2(Ω)6 + ∥ϕ∥2H2(Γ) ≤ C(1 + ∥h1∥2L2(Ω) + ∥h2∥2L2(Γ)), (2.53)

we study the function ϕ in a small ϵ-neighborhood of the boundary Γ. To do so, let
x0 ∈ Γ and y = y(x) be a local coordinates in the neighborhood of x0 such that
y(x0) = 0 and Ω is defined, in these coordinates, by the condition y1 > 0. Then, we
rewrite problem (2.49) in the variable y and after several transformations we find
estimate (2.53). To finish the proof of the theorem, we use the following embedding:

L2(IR,H2(IR2)) ∩H1(IR,H1(IR2)) ⊂ Cα(IR3), α < 1/4,

and we deduce the estimate:

∥ϕ∥2Cα(Ω) ≤ C(1 + ∥h1∥2L2(Ω) + ∥h2∥2L2(Γ)). (2.54)

Hence, Theorem (2.1) is proved (for more details see Miranville & Zelik [12]).
In what follows, we will establish the uniform Lipschitz continuity of the solution

(ϕ(t), µ(t), ψ(t)) of problem (2.9) with respect to the initial data.

Proposition 2.1. Let the above assumptions hold and let (ϕ1(t), µ1(t), ψ1(t)) and
(ϕ2(t), µ2(t), ψ2(t)) be two solutions of problem (2.9). Then, the following estimate
holds:

∥ϕ1(t)− ϕ2(t)∥2H−1(Ω) + ∥ψ1(t)− ψ2(t)∥2L2(Γ)

+

∫ t+1

t

(∥ϕ1(s)− ϕ2(s)∥2H1(Ω) + ∥ψ1(s)− ψ2(s)∥2H1(Γ))ds

≤ C
(
∥ϕ1(0)− ϕ2(0)∥2H−1(Ω) + ∥ψ1(0)− ψ2(0)∥2L2(Γ)

)
eKt,

(2.55)

where the constants C and K are independent of t, N and the initial data.
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Proof. Let (ϕ(t), µ(t), ψ(t)) = (ϕ1(t) − ϕ2(t), µ1(t) − µ2(t), ψ(t) − ψ2(t)). Then,
this function satisfies the system:

∂tϕ = −Aµ, ∂nµ|∂Ω = 0,

µ = −∆ϕ+ l̃N (t)ϕ, ϕ|t=0 = ϕ0,
∂tψ = ∆Γψ − ψ −m(t)ψ − ∂nϕ, x ∈ ∂Ω, ψ|t=0 = ψ0,
ϕ|∂Ω = ψ,

(2.56)

where

l̃N (t) :=

∫ t

0

f̃ ′N (sϕ1(t)+(1−s)ϕ2(t))ds and m(t) :=

∫ t

0

g′0(sϕ1(t)+(1−s)ϕ2(t))ds.

Multiplying the first equation of (2.31) by A−1ϕ, the second equation by ϕ and
the third one by ψ and taking the sum of the equations that we obtain, we have
the following identity:

1

2

d

dt

(
∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ)

)
+ ∥∇ϕ(t)∥2L2(Ω) + ∥∇Γψ(t)∥2L2(Γ)

+ ∥ψ(t)∥2L2(Γ) + (l̃N (t)ϕ(t), ϕ(t))Ω + (m(t)ψ,ψ(t))Γ = 0.
(2.57)

Using (2.3), (2.13) and the fact that g′0 is globally bounded, we obtain:

d

dt

(
∥ϕ(t)∥2H−1(Ω) + ∥ψ(t)∥2L2(Γ)

)
+ α′

(
∥ϕ(t)∥2H1(Ω) + ∥ψ(t)∥2H1(Ω)

)
≤ C(∥ϕ(t)∥2L2(Ω) + ∥ψ(t)∥2L2(Ω))

(2.58)

for some positive constants α′ and C which are independent of N. Using the interpo-
lation inequality ∥u∥22 ≤ C∥u∥H1(Ω)∥u∥H−1(Ω) and applying the Gronwall inequality,
we deduce (2.55).

3. Variational formulation and well-posedness

This section is devoted to the definition of a suitable notion for a solution to the limit
problem, that is, the problem obtained by letting N → +∞ and which coincides
with (2.1).To this end, we first fix a constant L > 0 such that:

∥∇φ∥2L2(Ω) − λ∥φ∥2L2(Ω) + L∥φ∥2H−1(Ω) ≥ 1/2∥φ∥2H1(Ω), (3.1)

for all φ ∈ H1(Ω) and introduce the quadratic form:

B(φ, ρ) := (∇φ,∇ρ)Ω − λ(φ, ρ)Ω + L((−∆+ I)−1φ, ρ)Ω + (∇Γφ,∇Γρ)Γ, (3.2)

∀φ, ρ ∈ H1(Ω)⊗H1(Γ). Then, obviously, we have:

B(φ,φ) ≥ 0, ∀φ ∈ H1(Ω)⊗H1(Γ). (3.3)

The limit problem (2.9), corresponding to N = +∞ formally reads: A−1∂tϕ = ∆ϕ− f(ϕ) + λϕ, ϕ|t=0 = ϕ0,
∂tψ = ∆Γψ − g(ψ)− ∂nϕ, x ∈ ∂Ω, ψ|t=0 = ψ0,
ϕ|∂Ω = ψ.

(3.4)
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Multiplying the first equation of (3.4) by the function ϕ− φ, where φ = φ(t, x)
is smooth, and integrating by parts, we obtain:

(A−1∂tϕ, ϕ− φ)Ω + (∂tϕ, ϕ− φ)Γ + (∇ϕ,∇(ϕ− φ))Ω − λ(ϕ, ϕ− φ)Ω

+ (∇Γϕ,∇Γ(ϕ− φ))Γ + (f(ϕ), ϕ− φ)Ω + (g(ϕ), ϕ− φ)Γ = 0,
(3.5)

which yields:

(A−1∂tϕ, ϕ− φ)Ω + (∂tϕ, ϕ− φ)Γ +B(ϕ, ϕ− φ)Ω + (f(ϕ), ϕ− φ)Ω

≤ L(A−1ϕ, ϕ− φ)Ω − (g(ϕ), ϕ− φ)Γ,
(3.6)

∀φ ∈ H1(Ω)⊗H1(Γ). Finally, since B is positive and f is monotone, we have:

B(ϕ, ϕ− φ) ≥ B(φ, ϕ− φ), (f(ϕ), ϕ− φ)Ω ≥ (f(φ), ϕ− φ)Ω. (3.7)

Consequently, (3.6) can be written as follow:

(A−1∂tϕ, ϕ− φ)Ω + (∂tϕ, ϕ− φ)Γ +B(φ, ϕ− φ)Ω + (f(φ), ϕ− φ)Ω

≤ L(A−1ϕ, ϕ− φ)Ω − (g(ϕ), ϕ− φ)Γ,
(3.8)

∀φ ∈ H1(Ω)⊗H1(Γ). If we consider the solutions of problem (2.9) with initial data
belonging to:

Φ := {(ϕ, ψ) ∈ L∞(Ω)× L∞(Γ), ∥ϕ∥L∞(Ω) ≤ 1, ∥ψ∥L∞(Γ) ≤ 1} (3.9)

and then pass to the limit N → ∞, we will find functions living in Φ for all time.
These functions are not necessarily solutions to (2.1) in the usual sense. For this,
we define a variational solution of the limit problem (3.4) as follows.

Definition 3.1. Let (ϕ0, ψ0) ∈ Φ. We say that (ϕ(t), ψ(t)) is a variational solution
to problem (2.1) originating from (ϕ0, ψ0) if

1. ϕ(t)|Γ = ψ(t) for almost all t > 0,

2. ϕ(0) = ϕ0, ψ(0) = ψ0,

3. −1 < ϕ(t, x) < 1 for almost all (t, x) ∈ R+ × Ω,

4. (ϕ, ψ) ∈ C([0,+∞),H−1(Ω) × L2(Γ)) ∩ L2([0, T ],H1(Ω) × H1(Γ)), for any
T > 0,

5. f(ϕ) ∈ L1([0, T ]× Ω) for any T > 0,

6. (∂tϕ, ∂tψ) ∈ L2([0, T ],H−1(Ω)× L2(Γ)), for any T > 0,

and the variational inequality

(A−1∂tϕ(t), ϕ(t)− φ)Ω + (∂tϕ(t), ϕ(t)− φ)Γ +B(φ, ϕ(t)− φ)Ω + (f(φ), ϕ(t)− φ)Ω

≤ L(A−1ϕ(t), ϕ(t)− φ)Ω − (g(ϕ(t)), ϕ(t)− φ)Γ,

(3.10)

is satisfied for almost all t > 0 and any test function φ ∈ H1(Ω)⊗H1(Γ) such that
f(φ) ∈ L1(Ω).
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We emphasize that we do not assume in the definition that ψ0 is the trace of ϕ0.
In order to show the uniqueness of a variational solution, we consider (3.10) in terms
of test functions φ = φ(t, x) depending on t and x with φ satisfying the regularity
assumptions in Definition 3.1. Then, we write inequality (3.10) with φ = φ(t, x)
for almost all t > 0. Moreover, due to the regularity assumptions (3.1) on ϕ and
φ, we integrate (3.10) with respect to t since all terms are in L1. This gives, for all
t > s > 0:∫ t

s

(
(A−1∂tϕ, ϕ− φ)Ω + (∂tϕ, ϕ− φ)Γ +B(φ, ϕ− φ)Ω + (f(φ), ϕ− φ)Ω

)
dτ

≤
∫ t

s

(
L(ϕ,A−1(ϕ− φ))Ω − (g(ϕ), ϕ− φ)Γ

)
dτ.

(3.11)

Arguing as in Miranville & Zelik [12], we set φα := (1 − α)ϕ + αφ, where
α ∈ (0, 1]. Then, assumption (2.2)4 implies that the function |f(ϕ)| is convex and

|f(φα)| ≤ |f(ϕ)|+ |f(φ)|, (3.12)

which yields that f(φα) ∈ L1(Ω). Consequently, φα is an admissible test function
for (3.11). Inserting φ = φα in the variational inequality (3.11), simplifying by
α and using the fact that (ϕ, ψ) is absolutely continuous on [s, t] with values in
H−1(Ω)× L2(Ω), we get:∫ t

s

((A−1∂tϕ, ϕ− φ)Ω + (∂tϕ, ϕ− φ)Γ +B(φα, ϕ− φ)Ω + (f(φα), ϕ− φ)Ω)dτ

≤
∫ t

s

(
L(ϕ,A−1(ϕ− φ))Ω − (g(ϕ), ϕ− φ)Γ

)
dτ.

(3.13)

Passing to the limit in (3.13) as α → 0 and using the Lebesgue dominated
convergence theorem for the nonlinear term, we obtain:∫ t

s

((A−1∂tϕ, ϕ− φ)Ω + (∂tϕ, ϕ− φ)Γ +B(ϕ, ϕ− φ)Ω + (f(ϕ), ϕ− φ)Ω)dτ

≤
∫ t

s

(
L(ϕ,A−1(ϕ− φ))Ω − (g(ϕ), ϕ− φ)Γ

)
dτ.

(3.14)

We can now state the following theorem which gives the uniqueness of such varia-
tional solutions.

Theorem 3.1. Let the nonlinearity f and g satisfy the assumptions of Section
1. Then, the variational solution of problem (3.4)(in the sense of Definition 3.1) is
unique and is independent of the choice of L satisfying (3.1). Furthermore, for every
two variational solutions (ϕ1, ψ1) and (ϕ2, ψ2), we have the following estimate:

∥ϕ1(t)− ϕ2(t)∥2H−1(Ω) + ∥ψ1(t)− ψ2(t)∥2L2(Γ)

≤ ceKt(∥ϕ1(0)− ϕ2(0)∥2H−1(Ω) + ∥ψ1(0)− ψ2(0)∥2L2(Γ)),
(3.15)

where the positive constants c and K are independent of t.
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Proof. We use (3.11), with ϕ = ϕ1 and φ = ϕ2, and we obtain:∫ t

s

((A−1∂tϕ1, ϕ1 − ϕ2)Ω + (∂tϕ1, ϕ1 − ϕ2)Γ)dτ

+

∫ t

s

(B(ϕ2, ϕ1 − ϕ2)Ω + (f(ϕ2), ϕ1 − ϕ2)Ω)dτ

≤
∫ t

s

(
L(ϕ1, A

−1(ϕ1 − ϕ2))Ω − (g(ϕ1), ϕ1 − ϕ2)Γ
)
dτ,

(3.16)

and (3.14) with ϕ = ϕ2 and φ = ϕ1, we find:∫ t

s

((A−1∂tϕ2, ϕ2 − ϕ1)Ω + (∂tϕ2, ϕ2 − ϕ1)Γ)dτ

+

∫ t

s

(B(ϕ2, ϕ2 − ϕ1)Ω + (f(ϕ2), ϕ2 − ϕ1)Ω)dτ

≤
∫ t

s

(
L(ϕ2, A

−1(ϕ2 − ϕ1))Ω − (g(ϕ2), ϕ2 − ϕ1)Γ
)
dτ.

(3.17)

Summing the two resulting inequalities (3.16) and (3.17) and using the fact that
(ϕi, ψi) are absolutely continuous on [s, t], i = 1, 2, with values in H−1(Ω)×L2(Γ),
we obtain:

1

2
(∥(ϕ1(t), ψ1(t))− (ϕ2(t), ψ2(t))∥2H−1(Ω)×L2(Γ)

− ∥(ϕ1(s), ψ1(s))− (ϕ2(s), ψ2(s))∥2H−1(Ω)×L2(Γ))

≤
∫ t

s

(L∥ϕ1(τ)− ϕ2(τ)∥2H−1(Ω) − (g(ϕ1(τ))− g(ϕ2(τ)), ϕ1(τ)− ϕ2(τ)))Γdτ.

(3.18)

Using the fact that g is bounded globally and applying the Gronwall inequality to
(3.18), we have:

∥(ϕ1(t), ψ1(t))− (ϕ2(t), ψ2(t))∥2H−1(Ω)×L2(Γ)

≤ ceKt∥(ϕ1(s), ψ1(s))− (ϕ2(s), ψ2(s))∥2H−1(Ω)×L2(Γ),
(3.19)

where the positive constants c and K are independent of t > s > 0 and (ϕi, ψi), i =
1, 2. Passing to the limit as s→ 0 and thanks to the continuity of (ϕi, ψi), i = 1, 2
from Definition 3.1, condition 4, we get the desired estimate, which in particular
gives the uniqueness.

Now, we need to prove that the above definition of a solution is independent of
the choice of L. To do so, we assume that (ϕ1, ψ1) is a variational solution for L = L1

and (ϕ2, ψ2) is a variational solution for L = L2. Using the following relation:

BL1(ϕ2, ϕ1 − ϕ2)−BL2(ϕ2, ϕ1 − ϕ2)

= L1(ϕ1, A
−1(ϕ1 − ϕ2))− L2(ϕ1, A

−1(ϕ1 − ϕ2))− (L1 − L2)∥ϕ1 − ϕ2∥2H−1(Ω),

(3.20)
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and arguing as in the proof of (3.15), we find:∫ t

s

((A−1(∂tϕ1 − ∂tϕ2), ϕ1 − ϕ2)Ω + (∂tϕ1 − ∂tϕ2, ϕ1 − ϕ2)Γ)dτ

+

∫ t

s

(BL1(ϕ2, ϕ1 − ϕ2)Ω −BL2(ϕ2, ϕ1 − ϕ2)Ω) dτ

≤ L1

∫ t

s

(
ϕ1, A

−1(ϕ1 − ϕ2)
)
Ω
dτ + L2

∫ t

s

(
ϕ2, A

−1(ϕ2 − ϕ1)
)
Ω
dτ

−
∫ t

s

(g(ϕ1(τ))− g(ϕ2(τ)), ϕ1(τ)− ϕ2(τ))Γ dτ.

(3.21)

After simplification, (3.21) gives:

1

2
(∥(ϕ1(t), ψ1(t))− (ϕ2(t), ψ2(t))∥2H−1(Ω)×L2(Γ)

− ∥(ϕ1(s), ψ1(s))− (ϕ2(s), ψ2(s))∥2H−1(Ω)×L2(Γ))

≤
∫ t

s

(L1∥ϕ1(τ)− ϕ2(τ)∥2H−1(Ω) − (g(ϕ1(τ))− g(ϕ2(τ)), ϕ1(τ)− ϕ2(τ)))Γdτ.

(3.22)

which coincides with (3.18) and also leads to (3.15). Theorem 3.1 is thus proven.

Theorem 3.2. For every initial data (ϕ0, ψ0) ∈ Φ, problem (3.4) possesses a unique
variational solution (ϕ, ψ) in the sense of Definition 3.1. Such a solution regularizes
as t > 0 and all the uniform estimates obtained above hold. In particular, the
following estimate is valid for every δ > 0 and t > 0:

∥ϕ(t)∥2Cα(Ω) + ∥ϕ(t)∥2H2(Ωδ)
+ ∥ψ(t)∥2H2(Γ) + ∥ϕ(t)∥2H1(Ω) + ∥∂tϕ(t)∥2H−1(Ω)

+ ∥∂tψ(t)∥2L2(Γ) + ∥∇Dτϕ(t)∥2L2(Ω) + ∥f(ϕ(t))∥L1(Ω)

+

∫ t+1

t

(∥∂tϕ(s)∥2H1(Ω) + ∥∂tψ(s)∥2H1(Γ))ds

≤ C(1 + ∥ϕ(0)∥2L2(Ω) + ∥ψ(0)∥2L2(Γ))e
−γt,

(3.23)

for some positive constants α and C which are independent of t and ϕ, where Dτ

denotes the tangential part of the gradient ∇.

Proof. Repeating the derivation of the variational inequality (3.11), we obtain
that (ϕN , ψN ) satisfies:

∫ t

s

(A−1∂tϕN , ϕN − φ)Ω + (∂tϕN , ϕN − φ)Γ +B(φ, ϕN − φ)Ω + (f(φ), ϕN − φ)Ωdτ

≤
∫ t

s

(
L(ϕN , A

−1(ϕN − φ))Ω − (g(ϕN ), ϕN − φ)Γ
)
dτ,

(3.24)

for every admissible test function φ and every t > s > 0. Our aim is to pass to the
limit N → +∞. We start with the case when the initial datum ϕ0 is smooth and
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satisfies the additional conditions:

|ϕ0(x)| ≤ 1− δ, δ > 0, ψ := u0|Γ. (3.25)

Then, by (2.48), we have:

∥ϕN (t)∥L∞([0,T ],H1(Ω)) + ∥ϕN (t)∥L∞([0,T ],H2(Ωδ))

+ ∥ψN (t)∥L∞([0,T ],H2(Γ)) ≤ C,
(3.26)

∥∂tϕN (t)∥L∞([0,T ],H−1(Ω)) + ∥∂tψN (t)∥L∞([0,T ],L2(Γ))

+ ∥∂tϕN (t)∥L2([0,T ],H1(Ω)) + ∥∂tψN (t)∥L2([0,T ],H1(Γ))

≤ C,

(3.27)

∥D2
τϕN (t)∥L∞([0,T ],L2(Ω)) ≤ C, (3.28)

∥ϕN (t)∥L∞([0,T ],Cα(Ω)) ≤ C, (3.29)

where the positive constant C depends on Ω, Γ, ϕ0, ψ0 and T but is independent
of N and t. From this point on, all convergence relations will be intended to hold
up to the extraction of suitable subsequences, generally not relabeled. Thus, we
observe that weak and weak star compactness results applied to the sequence ϕN
entail that there exists a function ϕ such that as N → ∞, the following properties
hold:

ϕN → ϕ weakly star in L∞ (
[0, T ], (H1(Ω)⊗H2(Γ)) ∩H2(Ωδ)

)
, (3.30)

(∂tϕN , ∂tψN ) → (ϕ, ψ) weakly star in L∞ (
[0, T ], (H−1(Ω)× L2(Γ))

)
, (3.31)

(∂tϕN , ∂tψN ) → (ϕ, ψ) weakly in L2
(
[0, T ], (H1(Ω)⊗H1(Γ))

)
, (3.32)

D2
τϕN → D2

τϕ weakly star in L∞([0, T ], L2(Ω)). (3.33)

It follows from (3.27) and (3.29), using the compactness theorem of Aubin-Lions,
that:

ϕN → ϕ strongly in Cγ([0, T ]× Ω) for some γ > 0. (3.34)

These convergence results allow us to pass to the limit N → +∞ in (3.24) and
prove that the limit function satisfies (3.11) for any admissible test function φ. The
only nontrivial term containing the nonlinearity fN can be treated by using the
inequality |fN (φ)| ≤ |f(φ)|, the fact that f(φ) ∈ L1([0, T ] × Ω) and the Lebesgue
dominated convergence theorem. The crucial point −1 < ϕ(t, x) < 1, for almost
all (t, x) ∈ R× Ω, can be proven as in Miranville & Zelik [12]. Indeed, taking into
account the definition of fN and the fact that the L1−norm of fN (ϕN ) is uniformly
bounded, we can conclude:

meas {(t, x) ∈ [T, T + 1]× Ω, |ϕM (t, x)| > 1 + 1/N} ≤ π(1/N), M ≥ N, (3.35)

where

π(x) :=
C

max {|f(1− x)|, |f(x− 1)|}
, (3.36)

for some positive constant C which is independent of T ∈ R+, of N and M, with
M ≥ N . Using the fact that π(x) → 0 as x→ 0 and passing to the limit M, N →
+∞ in (3.35), we conclude that:

meas {(t, x) ∈ [T, T + 1]× Ω, |ϕ(t, x)| = 1} = 0, (3.37)
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so that
|ϕ(t, x)| < 1 for almost all (t, x) ∈ R+ × Ω. (3.38)

Inequality (4.12) and the convergence ϕN → ϕ strongly in Cγ([0, T ]×Ω) imply
the almost everywhere convergence fN (ϕN ) → f(ϕ). Therefore, Fatou’s lemma
gives:

∥f(ϕ)∥L1([0,T ]×Ω) ≤ lim inf
N→+∞

∥fN (ϕN )∥L1([0,T ]×Ω) < +∞. (3.39)

Thus, f(ϕ) ∈ L1([0, T ]×Ω) and (ϕ, ψ) is a variational solution to problem (3.4). In
particular, the L1−estimate on f(ϕ) follows from (3.39). Since the separation from
singularities is not ensured on the boundary, we are not allowed to pass to the limit
in ∥FN (ϕN (t))∥L1(Γ).

Finally, we remove assumption (3.25). In that case, we approximate the initial
datum (ϕ0, ψ0) ∈ Φ by a sequence (ϕk0 , ψ

k
0 ) of smooth functions satisfying (3.25)

such that:

∥ϕ0 − ϕk0∥L2(Ω) → 0, ∥ψ0 − ψk
0∥L2(Γ) → 0, as k → +∞. (3.40)

Let (ϕk(t), ψk(t)) be a sequence of variational solutions of problem (3.4) satis-
fying
(ϕk(0), ψk(0)) = (ϕk0 , ψ

k
0 ), where ϕk|Γ = ψk. The existence of such a sequence of so-

lutions was proved above. Then, by estimate (3.15) and assumption (3.40), we can
see that (ϕk, ψk) is a Cauchy sequence in C([0, T ],H−1(Ω)× L2(Γ)) and therefore,
the limit function exists and

(ϕ, ψ) := lim
k→+∞

(ϕk, ψk) ∈ C([0, T ],H−1(Ω)× L2(Γ)).

Then, the proof of the theorem is finished as above.
We also have the following result:

Lemma 3.1. Let (ϕ(t), ψ(t)) be a variational solution of problem (3.4). Then,
ψ(t) = ϕ(t)|Γ for t > 0. Moreover, this solution solves (3.4) in the usual sense, that
is, for any φ ∈ C∞

0 ((0, T )× Ω), the following equation holds:∫
R+

(A−1∂tϕ(t), φ(t))Ωdt =

∫
R+

((∆ϕ(t), φ(t))Ω − (f(ϕ(t), φ(t))Ω) dt

+

∫
R+

λ(ϕ(t), φ(t))Ωdt.

(3.41)

Furthermore,
ϕ ∈ L∞([τ, T ],W 2,1(Ω)), 0 < τ < T, (3.42)

so that the trace of the normal derivative on the boundary,

[∂nϕ]int := ∂nϕ|Γ ∈ L∞([τ, T ], L1(Γ)), 0 < τ < T, (3.43)

exists.

Proof. Since ϕN is uniformly bounded in L∞([τ, T ],H2(Ωδ)), ∀δ > 0, and FN is
uniformly continuous, the sequence fN (ϕN ) is also uniformly bounded in
L∞([τ, T ],H2(Ωδ)). Using this fact and that fN (ϕN ) → f(ϕ) a.e., we obtain using
a weak version of the dominated convergence theorem that fN (ϕN ) → f(ϕ) weakly
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in L2([τ, T ],H2(Ωδ)). Thus, we are allowed to pass to the limit in the equation
corresponding to (3.41) for ϕN . We deduce from (3.41), that ϕ is a solution for:

A−1∂tϕ(t)−∆ϕ(t) + f(ϕ(t))− λϕ(t) = 0, in L2
loc((τ, T )× Ωδ). (3.44)

Moreover, since f(ϕ) and A−1∂tϕ belong to L∞((τ, T ), L1(Ω)), we find that

∆ϕ ∈ L∞((τ, T ), L1(Ω)).

Having the control of ∇Dτϕ, we deduce that ∆ϕ ∈ L∞((τ, T ),W 2,1(Ω)), which
yields the existence of the trace (3.43).

Concerning the second equation from (3.4), we use Theorem 2.1 and we see that:

∥∂tψN∥L∞([τ,T ],L2(Γ)) + ∥ψN∥L∞([τ,T ],H2(Γ)) ≤ c, (3.45)

where the constant c is independent of N . We have:

∂nϕN = ∂tψN −∆ΓψN + g(ψN ). (3.46)

Using (3.45), we deduce that ∂NϕN ∈ L∞([τ, T ], L2(Γ)). Passing to the limit as
N → +∞, we have the weak-star convergence in L∞([τ, T ], L2(Γ))

[∂nϕ]ext := lim
N→+∞

∂nϕN |Γ ∈ L∞([τ, T ], L2(Γ)), T > τ > 0, (3.47)

and
∂tψ −∆Γψ + g(ψ) + [∂nϕ]ext = 0, on Γ, T > τ > 0. (3.48)

In order to verify that the variational solution (ϕ, ψ) satisfies equations (3.4) in the
usual sense, there only remains to check that:

[∂nϕ]int = [∂nϕ]ext, for almost every (t, x) ∈ R+ × Γ. (3.49)

4. Additional regularity results and separation from
the singularities

In this section, we formulate several sufficient conditions which ensure that every
variational solution satisfies equation (3.4) in the usual sense. We have the following
result which gives an additional regularity on ϕ close to the points where |ϕ(t, x)| <
1.

Proposition 4.1. Let the assumptions of Theorem 3.1 hold and let (ϕ, ψ) be a
variational solution to (3.4). For any δ, T > 0, we set:

Ωδ(T ) = {x ∈ Ω, |ϕ(T, x)| < 1− δ} .

Then, ϕ ∈ H2(Ωδ(T )) and the following estimate holds:

∥ϕ∥H2(Ωδ(T )) ≤ Qδ,T , (4.1)

where the positive constant Qδ,T depends on T and δ but is independent of the
concrete choice of the solution ϕ.
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Proof. Since the solution ϕ(T, x) is Hölder continuous with respect to x, there
exists a smooth nonnegative cut-off function θ(x) such that: θ(x) ≡ 1, x ∈ Ωδ(T ),

θ(x) ≡ 0, x ∈ Ω\Ωδ/2(T ),
∥θ∥C2(R3(Ω)) ≤ Kδ,T ,

(4.2)

where Kδ,T is independent of the concrete choice of the solution ϕ. Let ϕN (t, x)
be a sequence of approximate solutions of problem (2.1) which converges to the
variational solution ϕ(t, x) as N → +∞. Then, since the convergence holds in the
space Cγ([0, T ]× Ω) for some γ > 0, we have:

|ϕN (T, x)| < 1− δ/4, x ∈ Ωδ/2(T ), (4.3)

for N large enough. Setting vN := θ(x)ϕN (T, x) and wN := θ(x)ψN (T, x), we have:{
∆xϕN − fN (ϕN (T ))− ϕN = h1(T ) := −ϕN + λϕN +A−1∂tϕN ,
∆ΓψN − ψN − ∂nϕN = h2(T ) := g0(ψN (T )) + ∂tψN .

(4.4)

Multiplying the first equation of (4.4) by θ, we find:

θ∆xϕN (T )− θϕN (T ) = θh1(T ) + θfN (ϕN (T ))

⇐⇒∆x(θϕN (T ))− θϕN (T ) = θh1(T ) + θfN (ϕN (T )) + 2∇xθ · ∇xϕN (T )

+ ϕN (T )∆xθ

⇐⇒∆xvN − vN = θh1(T ) + θfN (ϕN (T )) + 2∇xθ · ∇xϕN (T ) + ϕN (T )∆xθ.

(4.5)

Now, multiplying the second equation of (4.4) by θ, we obtain:

θ∆ΓψN (T )− θψN (T )− θ∂nϕN (T ) = θh2(T )

⇐⇒∆ΓwN − wN − ∂nwN = θh2(T ) + 2∇Γθ · ∇ΓψN (T ) + ψN (T )∆Γθ

− ψN (T )∂nθ.

(4.6)

Thus, φN satisfies the following elliptic boundary value problem:
∆xvN − vN = h̃1(ϕN ) := θh1(T ) + θfN (ϕN (T )) + 2∇xθ · ∇xϕN (T ) + ϕN (T )∆xθ,

∆ΓwN − wN − ∂nwN = h̃2(ψN ) := θh2(T ) + 2∇Γθ · ∇ΓψN (T ) + ψN (T )∆Γθ

− ψN (T )∂nθ.
(4.7)

Using the estimates (2.33), (2.50), (4.2) and (4.3), we find:

∥h̃1(ϕN )∥L2(Ω) + ∥h̃2(ψN )∥L2(Γ) ≤ Qδ,T , (4.8)

where the positive constant Qδ,T is independent of N and of the concrete choice of
the solution ϕ. Applying an H2−regularity result to problem (4.7) (see [11]), we
deduce that:

∥ϕN (T )∥H2(Ωδ(T )) ≤ Qδ,T . (4.9)

By passing to the limit as N → +∞, we deduce that ϕ(T ) ∈ H2(Ωδ(T )) and that
∥ϕ(T )∥H2(Ωδ(T )) ≤ Qδ,T .
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Lemma 4.1. Let (ϕ, ψ) a variational solution to (3.4). Assume, in addition, that
we have:

|ϕ(t0, x0)| < 1, (4.10)

for some (t0, x0) ∈ (0,+∞)×Γ. Then, there exists a neighborhood (t0−ε, t0+ε)×V
of (t0, x0) in R× Γ such that:

[∂nϕ]int(t, x) = [∂nϕ]ext(t, x), ∀(t, x) ∈ (t0 − ε, t0 + ε)× V. (4.11)

In particular, if ϕ satisfies:

|ϕ(t, x)| < 1 for almost all (t, x) ∈ R+ × Γ, (4.12)

then, the equality [∂nϕ]int = [∂nϕ]ext holds almost everywhere in (0,+∞) × Γ and
(ϕ, ψ) solves (3.4) in the usual sense.

Proof. We know that ϕ is Hölder continuous with respect to t and x. Thus
there exists ε > 0 such that |ϕ(t, x)| ≤ 1 − ε holds for all (t, x) in a neighborhood
(t0 − ε, t0 + ε) × Vε of (t0, x0) in (0,+∞) × Ω. Thanks to Proposition 4.1, the
approximate solution ϕN (converging to ϕ) satisfies:

∥ϕN∥L∞([t0−ε,t0+ε],H2(Ωε)) ≤ C,

where the positive constant C is independent of N . Then, we can assume that
ϕN → ϕ weakly-star in this space, which yields that ∂nϕN |Γ → ∂nϕ|Γ weakly in
L2([t0 − ε, t0 + ε] × V ) for some proper neighborhood V of x0. This convergence
result, together with the definition (3.47), leads to equality (4.11) and relation (4.12)
is a consequence of (4.11).

Thus, in order to prove that any variational solution ϕ is a solution in the usual
sense, it is sufficient to verify that ϕ satisfies (4.12).

Corollary 4.1. Let the assumptions of Theorem 3.1 hold. We assume that:

lim
s→±1

F (s) = +∞. (4.13)

Then, for every variational solution ϕ of problem (3.4), relation (4.12) holds and
the potential F verifies:

F (ϕ(t)) ∈ L1(Γ) and ∥F (ϕ(t))∥L1(Γ) ≤ CT , (4.14)

for almost all t ≥ T > 0.

Proof. Let ϕN be a sequence of approximate solutions converging to the varia-
tional solution ϕ. Applying estimate (6.4) in Miranville & Zelik [12], we obtain:

∥FN (ϕN )∥L1(Γ) ≤ CT , t ≥ T, (4.15)

where the constant CT is independent of N . Since lim
s→±1

F (s) = +∞, we deduce

that f(1− 1/N) → +∞ and f(1/N − 1) → −∞, as N → +∞, which yields:

∥fN (ϕN )∥L1(Γ) ≤ CT , t ≥ T. (4.16)

Arguing as in the proof of Theorem 3.2, we obtain that:

meas {(t, x) ∈ [T, T + 1]× Γ, |ϕM (t, x)| ≥ 1− 1/N} ≤ π(1/N), (4.17)
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where

π(x) =
C

max {|f(1− x)|, |f(x− 1)|}
.

Passing to the limit M,N → +∞, we deduce that:

meas {(t, x) ∈ [T, T + 1]× Γ, |ϕ(t, x)| = 1} = 0. (4.18)

Thus, condition (4.12) holds.
Then, using the convergence ϕN → ϕ in Cγ([0, T ]× Ω), with γ > 0 and the al-

ready proved statement 4.12, we conclude that FN (ϕN ) → F (ϕ) almost everywhere
in R+ × Γ and therefore, thanks to the Fatou lemma,

∥F (ϕ)∥L1(Γ) ≤ lim inf
N→+∞

∥FN (ϕN )∥L1(Γ) ≤ CT . (4.19)

Corollary 4.2. Let the assumptions of Theorem 3.1 hold. We assume that:

g(−1) + ε ≤ 0 ≤ g(1)− ε, (4.20)

for some ε > 0. Then, for every variational solution ϕ of problem (3.4), estimate
(4.12) holds and

∥f(ϕ)∥L1([t,t+1]×Γ) ≤ Cε,T , t ≥ T > 0, (4.21)

where the constant Cε,T is independent of the concrete choice of the variational
solution ϕ.

Proof. We consider the nonlinear elliptic-parabolic system: ∆ϕN (t)− fN (ϕN (t))− ϕN (t) = h1(t),
ϕN |Γ = ψN ,
∂tψN (t)−∆ΓψN (t) + ∂nϕN (t) + g(ψN (t)) = 0.

(4.22)

Arguing as in Miranville & Zelik [12], we have:

g(s) · fN (s) ≥ ε

2
|fN (s)|+ Cε, s ∈ R, (4.23)

where the constant Cε depends on g and ε but is independent of N . Arguing as in
Corollary 4.1, we deduce estimate (4.12). To derive (4.21), we multiply (4.22) by
fN (ϕN ) and we use (4.23). We obtain:

d

dt

∫
Γ

FN (ϕN (t))ds+ (f ′N (ϕN (t))∇ϕN (t),∇ϕN (t))Ω

+ (f ′N (ϕN (t))∇ΓϕN (t),∇ΓϕN (t))Γ

+ 1/2∥fN (ϕN (t))∥2L2(Ω) + ε/2∥fN (ϕN (t))∥L1(Γ)

≤ Cε(1 + ∥h1(t)∥2L2(Ω)).

(4.24)

The L2-norm of h1(t) is controlled thanks to (2.32) and we find:

∥h1(t)∥2L2(Ω) ≤c(1 + ∥∂tϕ(t)∥2H−1(Ω))

≤c(1 + ∥∂tϕ(0)∥2H−1(Ω) + ∥∂tψ(0)∥2L2(Γ))

<+∞.

(4.25)
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Integrating (4.24) with respect to t and using the fact that f ′N ≥ 0, we find:∫
Γ

FN (ϕN (t+ 1))dσ +

∫ t+1

t

(∥∇ϕN (s)∥2L2(Ω) + ∥∇ΓϕN (s)∥2L2(Γ)ds

+

∫ t+1

t

(∥fN (ϕN (s))∥2L2(Ω)) + ε/2∥fN (ϕN (s))∥L1(Γ))ds

≤ Cε,T +

∫
Γ

FN (ϕN (t))dσ.

(4.26)

We deduce from (4.26):

∥fN (ϕN )∥L1([t,t+1]×Γ) ≤ 2/ε(∥FN (ϕN (t))∥L1(Γ) + ∥FN (ϕN (t+ 1))∥L1(Γ)) + Cε,T

≤ C ′
ε,T .

(4.27)

Arguing as in Corollary 4.1, we finish the proof.

5. Attractors and exponential attractors

In this section, we study the asymptotic behavior of the system. We denote by
Φw := H−1(Ω)× L2(Γ). The space Φw is endowed with the natural norm:

∥φ∥2Φw = ∥φ∥2H−1(Ω) + ∥φ∥2L2(Γ), for all φ ∈ Φw. (5.1)

We have the following result:

Corollary 5.1. Under the assumptions of Theorem 3.2, equation (3.4) generates a
solution semigroup S(t) : Φw → Φw, where S(t)(ϕ0, ψ0) := (ϕ(t), ψ(t)) is the unique
variational solution of problem (3.4) departing from (ϕ0, ψ0). Furthermore, we have
the following Lipschitz continuity property:

∥S(t)(ϕ10, ψ1
0)− S(t)(ϕ20, ψ

2
0)∥2Φw

+

∫ t+1

t

∥S(s)(ϕ10, ψ1
0)− S(s)(ϕ20, ψ

2
0)∥2H1(Ω)×H1(Γ)ds

≤ CeKt∥(ϕ10 − ϕ20, ψ
1
0 − ψ2

0))∥2Φw ,

(5.2)

for all (ϕ10, ψ
1
0), (ϕ

2
0, ψ

2
0) ∈ Φw.

This corollary is a direct consequence of Proposition 2.1.
The following proposition gives the existence of the global attractor A for this

semigroup. We recall that, by definition, a set A ⊂ H−1(Ω) is the global attractor
for the semigroup S(t) if the following properties are satisfied:

1. It is a compact subset of H−1(Ω);

2. It is strictly invariant, i.e., S(t)A = A, ∀t > 0;

3. It attracts all bounded sets in H−1(Ω) as t → ∞, i.e., for every bounded set
X ⊂ H−1(Ω) there exists a neighborhood O(A) of A in H−1(Ω) and a time
T = T (O) such that:

S(t)X ⊂ O(A), t ≥ T.
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Proposition 5.1. The semigroup S(t) associated with the variational solutions of
problem (3.4) possesses the global attractor A which is bounded in the space Cα(Ω)×
Cα(Γ) for some positive constant α < 1/4.

Proof. The semigroup S(t) is dissipative. Indeed, thanks to estimate (2.27) there
exists R0 > 0 such that the ball BH1(R0) centered on zero with radius R0 in
H1(Ω)×H1(Γ) is absorbing in Φw and compact in the topology of Φw. In particular,
there exists a time t0 ≥ 1 such that S(t)BH1(R0) ⊂ BH1(R0), for any t ≥ t0. As a
consequence, the set:

B0 := ∪t≥t0S(t)BH1(R0)
Φw

(5.3)

is absorbing and positively invariant. Thus the existence of the global attractor A
follows from a proper abstract attractor’s existence theorem (see Temam [14]).

In the following theorem, we prove the existence of an exponential attractor
which by definition contains the global attractor and has finite fractal dimension.
To do this, we first recall the definition of the exponential attractor where A is the
global attractor for the semigroup {S(t)}t≥0:

Definition 5.1. Let X be a compact connected subset of a Banach space E. A
compact set M is called an exponential attractor for the semigroup {S(t)}t≥0 if
A ⊂ M ⊂ X and

1. S(t)M ⊂ M, ∀t ≥ 0.

2. M has finite fractal dimension, dF (M) <∞.

3. There exist positive constants c0 and c1 such that for every u0 ∈ X, we have:

distE(S(t)u0,M) ≤ c0e
−c1t, ∀t ≥ 0, (5.4)

where the pseudo-distance dist is the standard Hausdorff pseudo-distance be-
tween two sets, defined by distE(A,B) = supa∈A infb∈B ∥a− b∥E .

Theorem 5.1. The semigroup S(t) possesses an exponential attractor M which is
bounded in Cα(Ω)× Cα(Γ), α < 1/4.

Proof. There exists a positive constant R = R(R0) such that:

∥ϕ(t)∥Cα([t,t+1]×Ω) + ∥ϕ(t)∥H2(Γ) + ∥∂tϕ(t)∥H−1(Ω) + ∥∂tϕ(t)∥L2(Γ)

+ ∥f(ϕ(t))∥L1(Ω) + ∥∂tϕ(t)∥L2([t,t+1],H1(Ω)) + ∥∂tϕ(t)∥L2([t,t+1],H1(Γ))

≤ R,

(5.5)

for any initial datum in B0 where B0 is the set defined by (5.3). In particular, for
every point (ϕ, ψ) ∈ B0, there holds ϕ|Γ = ψ. We consider an arbitrary small ε−ball
B(ε, ϕ0; Φ

w) in the space B0 and centered on ϕ0, where 0 < ε ≤ ε0 ≪ 1, with the
parameter ε0 that will be fixed below. Let also ϕ0(t), t ≥ 0, be the solution starting
from ϕ0. We introduce the sets:

Ωδ(ϕ0) := {x ∈ Ω, |ϕ0(x)| ≤ 1− δ} ,

Ωδ(ϕ0) := {x ∈ Ω, |ϕ0(x)| > 1− δ} ,
where δ is a sufficiently small positive number. Then, thanks to the Hölder conti-
nuity of ϕ0 with respect to x, we have for all x1 ∈ ∂Ωδ1(ϕ0), x2 ∈ ∂Ωδ2(ϕ0):

0 < |δ1 − δ2| ≤ |ϕ0(x1)− ϕ0(x2)| ≤ c|x1 − x2|α. (5.6)
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Thus, there is a strict separation between ∂Ωδ1(ϕ0) and ∂Ωδ2(ϕ0) for any δ1 ̸= δ2,
i.e.

d(∂Ωδ1(ϕ0), ∂Ωδ2(ϕ0)) ≥ Cδ1,δ2 > 0, δ1 ̸= δ2, (5.7)

where the constant Cδ1,δ2 depends on δ1, δ2.
We note that, since ϕ0(t) is uniformly Hölder continuous with respect to t and

x, there exists T = T (δ) such that:

|ϕ0(t)| ≤ 1− δ/2, x ∈ Ωδ(ϕ0), t ∈ [0, T ],

|ϕ0(t)| ≥ 1− 3δ, x ∈ Ω2δ(ϕ0), t ∈ [0, T ].
(5.8)

Furthermore, using again the uniform Hölder continuity, we have:

∥ϕ1(t)− ϕ2(t)∥C(Ω) ≤C∥ϕ1(t)− ϕ2(t)∥κΦw∥ϕ1(t)− ϕ2(t)∥1−κ
Cα(Ω)

≤CT ∥ϕ1(0)− ϕ2(0)∥κΦw∥ϕ1(t)− ϕ2(t)∥1−κ
Cα(Ω)

≤CT ε
κ,

(5.9)

for every ϕ1(0), ϕ2(0) in B(ε, ϕ0,Φ
w). We can fix ε0 = ε0(δ) such that:

|ϕ(t)| ≤ 1− δ/4, x ∈ Ωδ(ϕ0), t ∈ [0, T ],

|ϕ(t)| ≥ 1− 4δ, x ∈ Ω2δ(ϕ0), t ∈ [0, T ],
(5.10)

for all trajectories ϕ(t) starting from the ball B(ε, ϕ0,Φ
w), ε ≤ ε0.

Due to (5.7), there exists a smooth cut-off function θ ∈ C∞(R3, [0, 1]) such that:

θ(x) =

{
0, if x ∈ Ωδ(ϕ0),
1, if x ∈ Ω2δ(ϕ0).

(5.11)

Furthermore, θ satisfies the additional condition:

∥θ∥Ck(R3) ≤ Ck, (5.12)

where k ∈ IN is arbitrary and the constant Ck depends on δ, but is independent of
the choice of ϕ0 ∈ B0. The second estimate of (5.10) yields:

f ′(ϕ(t, x)) ≥ Λ(δ), x ∈ Ω2δ(ϕ0), t ∈ [0, T ], (5.13)

for all trajectories ϕ(t) starting from the ball B(ε, ϕ0,Φ
w), where

Λ(δ) := min {f ′(1− 4δ), f ′(−1 + 4δ)} . (5.14)

Indeed, for every x ∈ Ω2δ(ϕ0), we have that |ϕ(t)| ≥ 1 − 4δ. Then, using the fact
that sgn s · f ′′(s) ≥ 0, we obtain:

if ϕ(t) ≥ 1− 4δ ⇒ f ′′(ϕ(t)) ≥ 0 ⇒ f ′(ϕ(t)) ≥ f ′(1− 4δ),
if ϕ(t) ≤ −1 + 4δ ⇒ f ′′(ϕ(t)) ≤ 0 ⇒ f ′(ϕ(t)) ≥ f ′(−1 + 4δ),

(5.15)

which yields (5.13). Since f ′(s) −−−−→
s→±1

+∞, then, Λ(δ) −−−→
δ→0

+∞ and we can fix

δ > 0 close enough to zero such that Λ(δ) is arbitrarily large. The next lemma gives
some kind of smoothing property for the difference of two solutions.



Long time behavior of an Allen-Cahn type equation 53

Lemma 5.1. Let the above assumptions hold. Then, there exists δ > 0 such that:

∥ϕ1(T )− ϕ2(T )∥2Φw ≤ e−βT ∥ϕ1(0)− ϕ2(0)∥2Φw + C

∫ T

0

∥θ (ϕ1(s)− ϕ2(s)) ∥2L2(Ω)ds,

(5.16)

where the positive constants β and C are independent of ϕ1(0), ϕ2(0) ∈ B(ε, ϕ0,Φ
w)

and ϕ0 ∈ B0.

Proof. We set ϕ(t) = ϕ1(t)− ϕ2(t) . Then, ϕ solves the following problem: A−1∂tϕ = ∆ϕ− l(t)ϕ+ λϕ, in Ω,
∂n(∆ϕ− l(t)ϕ+ λϕ)|Γ = 0,
∂tϕ−∆Γϕ+ ∂nϕ+ ϕ(t) +m(t)ϕ = 0, on Γ,

(5.17)

where

l(t) :=

∫ t

0

f ′(sϕ1(t) + (1− s)ϕ2(t))ds and m(t) :=

∫ t

0

g′0(sϕ1(t) + (1− s)ϕ2(t))ds.

Multiplying (5.17) by ϕ(t) and integrating over Ω, we obtain:

1

2

d

dt
(∥ϕ(t)∥2H−1(Ω) + ∥ϕ(t)∥2L2(Γ)) + ∥∇ϕ(t)∥2L2(Ω)

+∥∇Γϕ(t)∥2L2(Γ) + ∥ϕ(t)∥2L2(Γ) + (l(t)ϕ(t), ϕ(t))Ω

= λ∥ϕ(t)∥2L2(Ω) − (m(t)ϕ(t), ϕ(t))Γ

≤ λ∥ϕ(t)∥2L2(Ω) + C0∥ϕ(t)∥2L2(Γ),

(5.18)

where C0 = ∥g′∥C([−1,1]).

Due to (5.13), we have:∫
Ω

l(t, x)|ϕ(t, x)|2dx ≥
∫
Ω2δ

l(t, x)|ϕ(t, x)|2dx

≥Λ∥ϕ∥2
L2(Ω2δ)

=Λ∥ϕ∥2L2(Ω) − Λ∥ϕ∥2L2(Ω2δ)

≥Λ∥ϕ∥2L2(Ω) − Λ∥θϕ∥2L2(Ω).

(5.19)

Thus, we obtain:

d

dt
∥ϕ(t)∥2Φw + 2∥∇ϕ(t)∥2L2(Ω) + 2∥ϕ(t)∥2H1(Γ) + 2(Λ− λ)∥ϕ∥2L2(Ω)

≤ 2C0∥ϕ(t)∥2L2(Γ) + 2Λ∥θϕ∥2L2(Ω).
(5.20)

For the first term in the right hand-side of (5.20), we use the following trace in-
equality:

2∥ϕ∥2L2(Γ) ≤ 2C∥ϕ∥H1(Ω)∥ϕ∥L2(Ω) ≤
C√
Λ− λ

∥ϕ∥2H1(Ω)+C
√
Λ− λ∥ϕ∥2L2(Ω), (5.21)

and the fact that for some ω ∈ (0, 2), we have:

2∥∇ϕ(t)∥2L2(Ω) + 2∥ϕ(t)∥2H1(Γ) ≥ ω∥ϕ(t)∥2H1(Ω) + ω∥ϕ(t)∥2H1(Γ). (5.22)
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Thus, fixing δ in such a way that C0C ≤ ω

√
Λ− λ

2
and using (5.21) and (5.22)

in (5.20), we find:

d

dt
∥ϕ(t)∥2Φw + ω∥ϕ(t)∥2H1(Ω) + ω∥ϕ(t)∥2H1(Γ) + 2(Λ− λ)∥ϕ(t)∥2L2(Ω)

≤ C0C√
Λ− λ

∥ϕ(t)∥2H1(Ω) + C0C
√
Λ− λ∥ϕ(t)∥2L2(Ω) + 2Λ∥θϕ(t)∥2L2(Ω)

≤ ω/2∥ϕ(t)∥2H1(Ω) + ω/2(Λ− λ)∥ϕ(t)∥2L2(Ω) + 2Λ∥θϕ(t)∥2L2(Ω).

(5.23)

Taking β′ > 0 small enough, estimate (5.23) leads to:

d

dt
∥ϕ(t)∥2Φw + ω/2∥ϕ(t)∥2H1(Ω) + β′

(
∥ϕ(t)∥2H1(Γ) + ∥ϕ(t)∥2L2(Ω)

)
≤ 2Λ∥θϕ(t)∥2L2(Ω).

(5.24)

Using the inequalities ∥ϕ∥H−1(Ω) ≤ C∥ϕ∥L2(Ω) and ∥ϕ∥L2(Γ) ≤ C∥ϕ∥H1(Γ), we end
up with:

d

dt
∥ϕ(t)∥2Φw + ω/2∥ϕ(t)∥2H1(Ω) + β

(
∥ϕ(t)∥2L2(Γ) + ∥ϕ(t)∥2H−1(Ω)

)
≤ 2Λ∥θϕ(t)∥2L2(Ω),

(5.25)
for some positive constant β. Applying the Gronwall lemma, we obtain:

∥ϕ(T )∥2Φw ≤∥ϕ(0)∥2Φwe−βT + C

∫ T

0

e−β(T−s)∥θϕ(s)∥2L2(Ω)ds

≤∥ϕ(0)∥2Φwe−βT + C

∫ T

0

∥θϕ(s)∥2L2(Ω)ds,

(5.26)

and estimate (5.16) is proven.

Lemma 5.2. Let the nonlinearities f and g satisfy the assumptions of Section 2.
Then, there exists positive constants C and K independent of ϕi(0) in B(ε, ϕ0,Φ

w),
i = 1, 2, and ϕ0 in B0 such that the following estimate holds:

∥∂t(θ(ϕ1 − ϕ2))∥L2([0,T ],H−3(Ω)) + ∥θ(ϕ1 − ϕ2)∥L2([0,T ],H1(Ω))

≤CeKT ∥ϕ1(0)− ϕ2(0)∥Φw .
(5.27)

Proof. Due to (5.2) and the fact that ∇xθ is uniformly bounded, we have:

∥θ(ϕ1 − ϕ2)∥2L2([0,T ],H1(Ω))

=∥θ(ϕ1 − ϕ2)∥2L2([0,T ],L2(Ω)) + ∥∇x(θ(ϕ1 − ϕ2))∥2L2([0,T ],L2(Ω))

≤∥θ(ϕ1 − ϕ2)∥2L2([0,T ],L2(Ω)) + ∥∇xθ · (ϕ1 − ϕ2))∥2L2([0,T ],L2(Ω))

+ ∥θ · ∇x(ϕ1 − ϕ2))∥2L2([0,T ],L2(Ω))

≤CeT ∥ϕ1(0)− ϕ2(0)∥2Φw .

(5.28)

In order to find estimates on the time derivative, we first recall that ∂tϕ verifies:

∂tϕ = (−∆x + I)(∆xϕ− l(t)ϕ+ λϕ), (5.29)
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where ϕ = ϕ1 − ϕ2. Testing this equation by θφ for any test function φ ∈ C∞
0 (Ω),

using that supp θ ⊂ Ωδ(ϕ0), we obtain:

(∂t(θϕ(t)), φ)Ω

=− (∆xϕ(t)− l(t)ϕ(t) + λϕ(t),∆x(θφ(t))− θφ(t))Ω

=(∇xϕ(t),∇x∆x(θφ(t)))Ω − (l(t)ϕ(t), θφ(t))Ω + (λϕ(t), θφ(t))Ω

−(∇xϕ(t),∇xθφ(t))Ω + (l(t)ϕ(t),∆x(θφ(t)))Ω − (λϕ(t),∆x(θφ(t)))Ω

≤C∥ϕ∥H1(Ω)∥φ∥H3(Ω).

(5.30)

Estimate (5.30) yields that ∥∂t(θ(ϕ1(t) − ϕ2(t)))∥H−3(Ω) ≤ C∥ϕ∥H1(Ω) and using
(5.2), we obtain (5.27).

To conclude the proof of the theorem, we introduce the functional spaces:

H1 := L2([0, T ],H1(Ω)) ∩H1([0, T ],H−3(Ω)),

H := L2([0, T ], L2(Ω)).
(5.31)

We have that H1 is compactly embedded into H. For every ϕ0 ∈ B0, we define the
following operator:

Kϕ0 : B(ε, ϕ0,Φ
w) 7−→ H1

ϕ(0) 7−→ Kϕ0
ϕ(0) := θϕ(·),

where ϕ(t) is the variational solution departing from ϕ(0). Due to Lemma 5.2, the
map Kϕ0 is uniformly Lipschitz continuous:

∥Kϕ0(ϕ1 − ϕ2)∥H1 ≤ L∥ϕ1 − ϕ2∥Φw , ϕ1, ϕ1 ∈ B(ε, ϕ0,Φ
w), ε ≤ ε0 (5.32)

and thanks to Lemma 5.16, we have:

∥S(T )ϕ1 − S(T )ϕ2∥Φw ≤ γ∥ϕ1 − ϕ2∥Φw + c∥Kϕ0(ϕ1 − ϕ2)∥H, (5.33)

where γ < 0, c > 0 are independent of ϕ0 ∈ B0, ε ≤ ε0 and ϕ1, ϕ1 ∈ B(ε, ϕ0; Φ
w).

Arguing as in Miranville & Zelik[12], we have that inequalities (5.32) and (5.33),
together with the compactness of the embedding H1 ⊂ H, guarantee the existence
of an exponential attractor Md ⊂ B0 for the discrete semigroup S(nT ) acting on
the phase space B0. Since the semigroup S(t) is uniformly Hölder continuous with
respect to time and space in [0, T ]× B0, we deduce the existence of an exponential
attractor M for the continuous semigroup S(t) on B0 which can be obtained by the
standard formula

M := ∪t∈[0,T ]Md.
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